
Flowed Time of Flight Radiance Fields

Mikhail Okunev*1 , Marc Mapeke*1 , Benjamin Attal2 ,
Christian Richardt3 , Matthew O’Toole2 , and James Tompkin1

1 Brown University
2 Carnegie Mellon University
3 Codec Avatars Lab, Meta

Abstract. Flowed time of flight radiance fields (F-TöRF) is a method
to correct for motion artifacts in continuous-wave time of flight imaging
(C-ToF). As C-ToF cameras must capture multiple exposures over time to
derive depth, any moving object will exhibit depth errors. We formulate
an optimization problem to reconstruct the raw frames captured by the
camera via an underlying 4D volumetric scene and a physically-based
differentiable C-ToF simulator. With weak optical flow supervision, we
can infer a 3D volume with scene flow that explains the raw captures, even
though any particular time instant does not provide sufficient constraints
upon the depth or motion. On synthetic sequences, we find that our
approach reduces depth errors on dynamic objects by up to 20× compared
to C-ToF, particularly for axial motions and large disparities (≥ 25 pixels)
between raw frames. On real-world sequences, we see qualitatively similar
gains with artifacts resolved on falling pillows and swinging baseball bats.

1 Introduction

Estimating depth is a core measurement task in imaging, providing opportunities
in computational photography, media editing, AR/VR, and as a precursor to
3D scene reconstruction. Modern multi-camera systems can estimate depth via
passive stereo, but depth is still difficult to estimate in textureless regions. Instead,
many cameras like smartphones include active illumination time-of-flight (ToF)
sensors to improve depth estimation [17]. One scheme is continuous-wave or
correlation-based ToF (C-ToF): infrared light is emitted into the scene over time
with sinusoidal amplitude at a particular frequency. Then, when the light is
reflected back to the sensor, the camera captures three or more raw frames over
time to estimate the phase and amplitude of the returned sinusoid per pixel.
With the phase offset, we can compute depth given the emission frequency and
the speed of light [7, 8]. C-ToF’s active approach is significantly more accurate
than passive stereo depth estimation, especially in textureless regions.

However, C-ToF’s imaging model assumes that scenes and the camera are
static: as we must estimate the phase offsets from multiple frames, depth is
inaccurate if anything moves, causing large errors such as ghosting or blurring
under fast motion. This affects objects with motions relative to the camera, and

All experiments were performed by university authors; CR’s role was as an advisor.

https://orcid.org/0000-0001-9851-4445
https://orcid.org/0009-0003-3762-4781
https://orcid.org/0000-0002-0132-5232
https://orcid.org/0000-0001-6716-9845
https://orcid.org/0000-0002-0740-9349
https://orcid.org/0000-0003-2218-2899

2 M. Okunev and M. Mapeke et al.

C-ToF Depth

<latexit sha1_base64="nT1YSWeD3/KCCZM3zT9FFVy6pLc=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWDzhOuB/RgRKhYBSt1O4iTck1cXvlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/N7p2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfR50heaM5RjSyjTwt5K2JBqytBGVLIheIsvL5PmWdW7qJ7fn1dqN3kcRTiCYzgFDy6hBndQhwYwkPAMr/DmPDovzrvzMW8tOPnMIfyB8/kDxaSPJg==</latexit>

⌧ = 0
<latexit sha1_base64="a+ATkRwMdM6uv5yIQMMU+TVzWpA=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ9OKxgv2ANpTNdtMu3Wzi7kQooX/CiwdFvPp3vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6Hbqt564NiJWDzhOuB/RgRKhYBSt1O4iTck18Xrlilt1ZyDLxMtJBXLUe+Wvbj9macQVMkmN6Xhugn5GNQom+aTUTQ1PKBvRAe9YqmjEjZ/N7p2QE6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfR50heaM5RjSyjTwt5K2JBqytBGVLIheIsvL5PmWdW7qJ7fn1dqN3kcRTiCYzgFDy6hBndQhwYwkPAMr/DmPDovzrvzMW8tOPnMIfyB8/kDxyiPJw==</latexit>

⌧ = 1

Fig. 1: Deriving depth from C-ToF samples over time causes motion artifacts.
The cube’s motion (left) invalidates C-ToF algorithm assumptions. Depth is derived
both from light reflected from the cube and background, causing ghosts to appear
(center). Right: C-ToF depth along the red and green lines, showing discrepancies.

also any motions of the camera itself relative to the scene—static or otherwise—
such as handheld motions of a smartphone. Further, depth is estimated per pixel
without correspondence over time; no 4D reconstruction is possible.

Existing approaches have attempted to mitigate motion errors. We might
ignore moving regions by detecting pixels whose raw frames have inconsistencies
[13], but this reduces the completeness of our estimate. Under small motion
assumptions, we can use the temporal derivative to detect and correct for motion
artifacts [31], or we could simplify scene motion assumptions [10, 12]. We might
try to estimate 2D optical flow between the raw frames captured at different time
instances, and then reproject all raw frames to a consistent time instance [22].
While optical flow can measure lateral motion, it cannot measure axial motion.
Further, optical flow typically assumes brightness constancy, and any motion with
an axial component will break this assumption. To counteract this, we might try
to learn a correspondence function from data using a C-ToF simulator [30]. But,
this can be brittle as it leaves a domain gap to real C-ToF data. Fundamentally,
the 3D scene under motion must be known to correctly synthesize a raw frame
at an unseen time so as to remove motion errors (Figure 1).

Our approach attempts to better principally model the image formation of raw
C-ToF frames via a neural time-of-flight radiance field optimization [2, 24, 37].
Given raw C-ToF frames, we explain their intensities across time by rendering
an underlying 4D scene (geometry and motion) using simulations of a C-ToF
camera from a physically-based radiative transport model, without directly
computing depth from C-ToF measurements via phase offsets. This allows us to
avoid prematurely making decisions about where scene elements must be while
motion is still unexplained. For motion, we induce a velocity field that explains
how the 3D geometry moves [1]; this is possible by relaxing an initial 4D scene
reconstruction that assumes synchronous raw frame capture to an asynchronous
one, and by using weak supervision from a pre-trained 2D optical flow network
that the projected 3D velocity must match. Once optimized, the representation
provides depth estimates for moving objects with reduced ghosting.

We show our method’s efficacy on seven synthetic sequences and on six
real ones. Our approach is more effective than a neural time-of-flight radiance
field method that does not account for motion [2], and is more effective for axial
motions than a 2D optical flow interpolation method [26]. More broadly, as motion

Flowed Time of Flight Radiance Fields 3

(𝑥𝑥,𝜔𝜔, 𝜏𝜏) (𝜎𝜎, 𝐿𝐿𝑎𝑎, Ŷ𝑣𝑣)

3D velocity
𝐯𝐯 ⋅ Δ𝜏𝜏

0/4

ℒ𝜙𝜙 − ℒ𝜙𝜙GT

𝐿𝐿0 𝐿𝐿3𝜋𝜋
2

𝐿𝐿𝜋𝜋
2

𝐿𝐿𝜋𝜋

2D flow

1/4 2/4 3/4

Phase-invariant
reprojection

Large
Disparity

Time 𝜏𝜏

Fig. 2: Method overview. The four raw frames captured sequentially over time τ
(top) show large brightness differences due to the emission phase. The large disparity
on moving objects causes depth artifacts. Recovering a 4D scene representation with
help from 2D optical flow lets us correctly reproject one timestep onto another in a
phase-aware way, such that we can supervise the scene at fractional time moments.

artifacts occur across many multi-shot imaging processes, we show a principled
method to account for and correct them through 4D scene reconstruction.

Assumptions and Limitations. We assume a co-located emitter, that each raw
frame is captured at separate time steps (no multi-tap), and that motion is
locally linear; higher-order motion models exist and may improve quality. We use
optical flow to weakly supervise our reconstruction, so flow estimation errors may
propagate to our results. Our implementation builds upon standard NeRF [24]
so the method is slow; many acceleration techniques exist and could be used.

2 Image Formation Model

2.1 C-ToF Camera Principles

First, we introduce C-ToF principles to motivate why motion artifacts exist. Many
variations exist; we focus on the principles for our real-world setup (Appx. B).

To measure depth, a C-ToF camera system emits a periodic time-varying
infrared light signal into a scene, typically modelled as a sinusoid sin(2πft).4 In an
idealized model, the camera receives the reflected light and, through correlation
with a reference sinusoidal signal, produces an image with pixel intensities of
the form A sin(ψ + ϕ) +B. Here, the amplitude A reflects the amount of light
4 Light intensity is more accurately modelled with a non-negative signal 1

2
sin(2πft)+ 1

2
,

but we opt to use the simpler model for clarity.

4 M. Okunev and M. Mapeke et al.

received at each pixel, the bias B depends on ambient illumination, and the
phase ψ captures the time for which light is in flight. The offset ϕ represents
a programmable temporal shift of the reference signal. To solve for the three
unknowns A, B, and ψ, at least three intensity measurements are required, using
different offsets ϕ. In practice, four offsets are typically used for robustness,
where ϕ ∈ {0, π2 , π,

3π
2 }, and the camera produces a quartet of raw frames

Lϕ = {A sin(ψ + ϕ) +B}.
Given frames Lϕ, a typical C-ToF camera recovers the phase ψ and computes

distance by multiplying time travelled with the speed of light c [8]:

dToF =
c

4πf
ψ where ψ = arctan

(︄
L0 − Lπ

Lπ
2
− L 3π

2

)︄
, (1)

since

arctan

(︄
L0 − Lπ

Lπ
2
− L 3π

2

)︄
= arctan

(︃
A sin(ψ) +B − (−A sin(ψ) +B)

A cos(ψ) +B − (−A cos(ψ) +B)

)︃
(2)

= arctan (tan(ψ)) = ψ. (3)

The amplitude of the returned light can be computed as:

La = A = 1
2

√︂
(L0 − Lπ)2 + (Lπ

2
− L 3π

2
)2. (4)

The camera treats this quartet as representing one tick of time, e.g., a 30Hz
depth output requires capturing raw frames at 120Hz. But, moving objects
cause errors as the reflected light arriving at a pixel across the quartet Lϕ does
not correspond to a single scene point, causing incorrect phase—and so depth—
estimates (Figure 1). This model assumes that light reflects back to the sensor
from one surface only within a vacuum, when in truth it travels in complex paths.

2.2 Volume-based C-ToF Image Formation

To fix these issues, we will infer an underlying 4D scene representation that can
explain both geometry and motion. We consider the volume rendering model
that represents a scene as a density field σ(x) defined for each world point x,
and a radiance field Ls(x,ω) representing the reflected radiance, defined also for
each direction ω. The total light arriving into a camera point xc from direction
ωo can be defined by the ray integral [6]:

L(xc,ωo) =

∫︂ tf

tn

T (xc,xt)σ(xt)Ls(xt,ωo) dt, (5)

T (xc,xt) = exp

(︃
−
∫︂ t

tn

σ(xc − ωos) ds

)︃
. (6)

T (xc,xt) describes the transmittance for light propagating from position xc to
xt = xc − ωot, for t ∈ [tn, tf] within the near and far bounds. We can produce

Flowed Time of Flight Radiance Fields 5

the depth along a ray similarly by replacing the reflected radiance Ls with the
distance from the camera to the point, i.e., ∥xc − xt∥ = t:

d(xc,ωo) =

∫︂ tf

tn

T (xc,xt)σ(xt) t dt. (7)

Some approaches have used C-ToF-derived depth estimates (Equation 1) to
directly supervise scene reconstruction [4, 25]. However, any errors in the super-
vising depth due to simplified image formation assumptions will persist in the
reconstruction. Attal et al. [2] showed that Equation 5 can be more-principally
adapted to model emitted light I from a time-of-flight system, assuming that the
emitter is a point light co-located with the infrared sensor [2, 3]:

LToF(xc,ωo) =

∫︂ tf

tn

T (xc,xt)
2

t2
σ(xt)Is(xt,ωo)W (2t) dt, (8)

where Is is the scattered intensity of the emitted light reflected back along the
same ray (ωi = ωo), the transmittance term is squared due to light traveling
twice the distance (2t) between camera origin xc and scene point xt, and the 1/t2

term is the point light’s inverse square intensity falloff.
The path-length importance function W (2t) weights the contribution of a

light path of total length p. Pediredla et al. [27] show that this can represent
C-ToF images using the phasor W (p) = exp

(︁
i 2πpfc

)︁
. As the function W (p) is

complex-valued, the radiance LToF(x,ωo) will also be a complex-valued phasor
image [7]. In practice, the supervising phasor images are created from the four
real-valued raw frames under linear combination: LToF = (L0−Lπ)− i(Lπ

2
−L 3π

2
),

where the phasor magnitude corresponds to the amplitude.
This model allows emitted light to integrate to produce a phasor to supervise

the density field, rather than supervising depth directly. But, phasor creation
assumes that raw frames are acquired simultaneously when, in fact, they are not.

2.3 Raw-Frame C-ToF Image Formation under Synchronous Capture

Let us expand the model to predict raw frames assuming, for now, unrealistic
synchronous capture. This model is fine for static scenes or scenes with very slow
motion. Under integration, this lets us recreate the intensity of raw frames via
depth derived from the density field σ and an amplitude field La:

Lϕ(xc,ωo) =

∫︂ tf

tn

T (xc,xt)
2

t2
σ(xt)ϕ(t)La(xt,ωo) dt, (9)

where ϕ models the modulation of the light via one of the raw sample quads:
{sin(t), cos(t),− sin(t),− cos(t)}. The amplitude La represents the remaining
unknown spatially-varying brightness of the scene, including view-dependent
effects. The model can also be extended to learn the bias B, but we omit it for
simplicity. This formulation initially may seem underconstrained because both
density σ and amplitude La are free to vary. However, both must be consistent
between all four phase offsets and through the transmission and fall-off terms,
such that the correct raw intensities are produced.

6 M. Okunev and M. Mapeke et al.

Neural Field, Rendering, and Reconstruction Loss. Both density σ and ampli-
tude La are represented by a neural field using a simple MLP: Fθ : (x,ω) →
(σ(x), La(x,ω)). For volume rendering, we follow Mildenhall et al. [24]. Penalizing
a reconstruction loss Lϕ = ∥Lϕ − LGT

ϕ ∥2 between the set of raw frames Lϕ and
their renderings is sufficient to optimize σ to be meaningful. Given the density
field, Equation 7 will render scene depth.

2.4 Asynchronous Capture via Dynamic Field Reprojection

For a dynamic scene, we can no longer expect each pixel across the quartet to
image the same world point. In this case, we must form additional constraints
over time such that quartet pixels can provide meaningful depth constraints.
First, we extend Equation 9 to time by parameterizing our MLP by time τ :

Lϕ(xc,ωo, τ) =

∫︂ tf

tn

T (xc,xt, τ)
2

t2
σ(xt, τ)ϕ(t)La(xt,ωo, τ) dt, (10)

Then, an ideal depth constraint would allow us to sample the three missing raw
frames from the quartet at the time instance of the remaining raw frame. One
might naïvely hope that an optimized MLP will produce a smooth function over
time for this sampling task, but fast motion can induce large disparities that
make this fail, and correspondence must be induced.

First, we will describe a correspondence model, then discuss its supervision.
We introduce motion as a pair of instantaneous velocity fields of 3D vectors
vf, vb for forward and backward time [1, 19]. Since both fields are used in a
symmetrical way, we will denote them v where appropriate to not complicate the
notation. The full model becomes Fθ : (x,ω, τ) → (σ(x, τ), La(x,ω, τ),v(x, τ)).

The 4D scene can be supervised via reprojection across time. We denote a
field f(x, τ, ...) being reprojected from τ = i to τ = j by the velocity field v as
f i→j . Assuming i < j, the reprojection is defined as

f(xj , τ = j, ...)i→j = f(xj→i
j , τ = i, ...)

where xj→i
j = xj + vb(xj , τ = j) · (j − i).

(11)

Reprojection is defined symmetrically for i > j, using the forward flow. We use
the nomenclature that L0 is captured at an integer time moment, e.g., Lτ=1

ϕ=0

at τ = 1; and that Lπ
2
, Lπ, L 3π

2
are captured at fractional time moments, e.g.,

τ = 1.25, 1.5, 1.75. For instance, to render a raw frame for ϕ = π
2 at timestep

τ = 1.25, using the density and amplitude from timestep τ = 1:

L1→1.25
π
2

(xc,ωo, τ = 1.25) =

∫︂ tf

tn

T 1→1.25(xc,xt)
2

t2
·

σ1→1.25(xt) cos(t)L
1→1.25
a (xt,ωo) dt,

(12)

where ωo is constant across both time moments.

Flowed Time of Flight Radiance Fields 7

With loss Without loss With loss Without loss

Fig. 3: Phase-invariant reprojection loss ablation. Left: In StudyBook , the model
fails to reconstruct the outline of the dynamic object in the absence of the phase-
invariant reprojection loss. Right: The model without the phase-invariant reprojection
loss captures the outline of the object, but fails to reconstruct fine details, while also
generating depth artifacts in the background.

Phase-invariant Reprojection. To supervise velocity, one might immediately turn
to 2D optical flow, but there are challenges here. Due to the phase of the sinusoidal
emission, raw frames will only have similar intensities at integer increments,
e.g., Lτ=1

ϕ=0 and Lτ=2
ϕ=0, with significantly different intensities across fractional

increments, e.g., between Lτ=1
ϕ=0 and Lτ=1.25

ϕ=π
2

. This breaks typical brightness
constancy assumptions from 2D motion estimators like optical flow, making it
difficult to supervise motion between fine-grained fractional moments in time—
even though this is needed to reconstruct fast motion. However, recovering a
4D representation via physically-based image formation naturally aids this: as
raw frames only depend upon the scene density and amplitude, reprojection
across time will automatically account for any intensity variation that would have
occurred by the illumination phase variation. This makes it possible to reproject
any fractional time moment to any other with correct intensity accommodation.

3 Optimization Losses

Phase-invariant Reprojection. We exploit this property of our model to supervise
the 4D scene with sufficient depth and motion constraints. For each fractional time
moment j, we have two nearby integer moments i1 and i2. If depth and motion are
correct, then reprojecting the scene to time j and rendering it will reproduce the
raw frame from the camera. These two constraints supervise density and velocity:

Li1→j
ϕ and Li2→j

ϕ , where Li→j
ϕ =

⃦⃦⃦
Li→j
ϕ (xc,ωo, τ = j)− LGT

ϕ (xc,ωo, τ = j)
⃦⃦⃦2

for each fractional raw frame of the quartet Lϕ.
Penalizing this phase-invariant reprojection loss across fractional timesteps—

as would normally be difficult as raw frames exhibit large intensity variations—
allows us to resolve finer details under motions. To show this, we compare to only
penalizing a reprojection loss across integer timespans (Figure 3). Our approach
improves depth edges on dynamic objects: the detail of the two back slats is
recovered with the loss, where only an incorrect back plane is recovered otherwise.

8 M. Okunev and M. Mapeke et al.

Optical Flow Supervision. As fast motions induce large disparities, we must
still supervise the velocity field. We can only do this across integer timespans
as weaker supervision. We use RAFT [33] to compute optical flow uF between
Li
0 and Li+1

0 . Then, this 2D optical flow prediction uF should match the (2D)
perspective projection of the velocity field u:

u(xc,ωo, τ = i) = Πi

(︃∫︂ tf

tn

T (xc,xt)σ(xt)v(xt, τ = i) dt

)︃
, (13)

where Πi is the perspective projection for the camera at time i.
The motion reconstruction loss is defined as Lu =

∑︁
i ∥ui − uFi∥2, where i

is an integer timestep. As optical flow prediction produces both forwards and
backwards flow, we penalize this loss using both directions. This helps to correct
for occlusion and disocclusion artifacts that otherwise could appear in the density
field. As optical flow estimates may be in error, we only use this supervision
with a small weight λu and allow the model to correct the velocity through the
reprojected raw frame constraints.

One might think to supervise scene flow directly. While scene flow estimators
that use depth input do exist [34], this would require resolving depth first—this is
exactly the process we wish to avoid as resolving depth induces motion artifacts.

Two-stage Optimization. Simultaneously estimating density and velocity is under-
constrained for monocular capture, but careful staging within the optimization
can lead to reasonable solutions for depth and motion. As such, we initially opti-
mize the scene via Equation 10 by assuming that the quartet of raw frames were
captured synchronously. This produces blurry and ghosted density in dynamic
regions and is similar to previous work that does not account for fractional time
samples [2]. Then, we use Equation 12 for the remainder of training.

Stage 1 of the optimization penalizes raw ToF images from Equation 10:

L = L0 + Lπ
2
+ Lπ + L 3π

2
, (14)

where Lϕ =
∑︁

i

⃦⃦⃦
Lτ=i
ϕ − Lτ=i

ϕ,GT

⃦⃦⃦2
and i is an integer timestep.

For stage 2, we penalize:

L =
∑︂
i,j

λϕLi→j
ϕ + λuLu, (15)

where i is an integer timestep, and j are fractional timesteps such that |i− j| < 1.
As Li

0 are integer timestep aligned, we can skip their reprojection.

4 Experiments
Datasets. For quantitative evaluation, we generate a set of seven didactic scenes
in Blender at a resolution of 320×240. These scenes are so simple that any
method has ‘nowhere to hide’ in its depth recovery; motions are fast and artifacts
are prevalent. The scenes show cubes undergoing axial, lateral, and rotational

Flowed Time of Flight Radiance Fields 9

motions of different speeds to induce varying disparities, undergoing occlusion,
both with and without texture, and with chair objects to assess thin features.
The scenes are strictly monocular without camera motion. For the fastest scenes
(3 Cubes Speed Test , 3 Chairs Speed Test , Arcing Cube, Axial Speed Test), the
disparity ranges up to 127 pixels across integer timesteps, and 9–18 pixels for
slower scenes (Sliding Cube, Occluded Cube, Orthogonal Speed Test). Three scenes
test large axial motion (Arcing Cube, Axial Speed Test , Orthogonal Speed Test).

We use a C-ToF simulator based on the physically-based path tracer PBRT
[28] with multi-bounce and scattering effects. Some render noise exists.

For real-world evaluation, we capture five sequences with fast motion: Pillow ,
Baseball , JumpingJacks, Target , and Fan with a Texas Instruments OPT8241
sensor (320×240 at 30 fps) with 5m unambiguous depth range. We also use
the existing StudyBook sequence from Attal et al. [2]—most of their published
sequences contain only small and slow motions, but this one induces artifacts. This
sequence uses a complementary color camera (see supplement). For StudyBook
only, the camera moves. We use camera poses provided by the sequence authors.

Methods. C-ToF Depth denotes depth produced by the camera itself through
integration of the four captured images (Section 2.1). 2D Flowed Raw Frames
attempts to align raw frames through optical flow warping before subsequent
integration. We compute RAFT flow between matching phase offsets, then warp
using Softmax Splatting [26]. For example, we estimate flow between L1.25

1 and
L2.25
1 , and warp to produce L1.25→2

1 . Repeating this across all phase offsets lets
us integrate {L2

0, L
1.25→2
1 , L1.50→2

2 , L1.75→2
3 } to produce an estimate at timestep

τ = 2. TöRF is the previous phasor-based work of Attal et al. [2] that (incorrectly)
assumes synchronous capture. This is similar to Stage 1 of our approach, but
trained to convergence. TöRF uses separate networks for static and dynamic parts
and blends them together. For fair comparison, we disable the static network; in
principle, it could be added to our method too.

For our method, we render two depth outputs: d or ‘Ours (Depth)’, and
dToF or ‘Ours (ToF)’. d is produced by volume rendering density σ via Eq. 7.
As σ is only indirectly optimized via the reconstruction of Lϕ, d can be a little
soft (especially for static camera sequences). Thus, we also derive dToF from
the volume rendered Lϕ via Eq. 1, which maintains sharpness as individual raw
frames have high PSNR (≈30–40 db).

Metrics. For synthetic scenes, we compute MSE against ground-truth rendered
depth, and MSE for dynamic regions using ground-truth rendered optical flow.

Please see supplemental material for pre-processing and optimization details.

4.1 Results
Quantitative Results. In scenes with strong axial motion (Arcing Cube, Axial
Speed Test), our approach of reconstructing a 4D scene fares better than the 2D
Flowed baseline (Table 3). This is expected as the approach can better resolve
motion in depth thanks to the scene flow estimation. With axial-only motion
(Orthogonal Speed Test), no method fares particularly well still. In sequences

10 M. Okunev and M. Mapeke et al.

Ground truth C-ToF Depth 2D Flowed TöRF [2] Ours (Depth) Ours (Motion)

S
li
d
in

g
C
u
be

A
rc

in
g

C
u
be

3
C
u
be

s
S
T

3
C
h
a
ir

s
S
T

O
cc

lu
d
ed

C
u
be

A
x
ia

l
S
T

O
rt

h
o
.
S
T

Fig. 4: Our approach reduces ghosting on dynamic objects by recovering
scene flow. Synthetic scenes showing different motion characteristics across methods.
C-ToF causes ghosting on moving objects. Our approach is able to reconstruct the
apparent motion better than a volume integration method that does not account for
asynchronous raw frame capture (TöRF [2]), and similarly to a 2D flow method [26].
For large axial motions, our approach tends to improve over the 2D flow baseline. Inset
on ground truth: Corresponding RGB frame.

Flowed Time of Flight Radiance Fields 11

Table 1: 4D reconstruction from raw frames reduces depth error. Synthetic
scenes; showing MSE×100. The camera is fixed, so error will mostly exist on dynamic
objects. We report all-region error and dynamic-region error (with % pixels across all
frames). ‘Ours dToF’ refers to rendering raw frames via our 4D reconstruction and then
deriving depth via Eq. 1, while ‘Ours’ refers to rendering density σ as depth via Eq. 7.

Scene Depth from Eq. 1 Depth from Eq. 7
C-ToF 2D flow Our dToF TöRF Our d

Arcing Cube Dyn. 6.70% 303.350 15.570 6.824 76.179 13.310
Large axial+lateral+rot. motion All 36.768 1.678 0.470 6.278 1.256

Axial Speed Test Dyn. 7.51% 20.147 5.912 1.999 8.193 3.430
Varying axial motions All 2.068 0.662 0.251 1.143 0.938

Orthogonal Speed Test Dyn. 9.71% 322.139 101.369 131.710 172.835 33.021
Varying axial-only motion All 41.931 19.805 27.488 22.855 7.527

Sliding Cube Dyn. 4.17% 1.575 0.119 0.195 2.247 1.080
Lateral+minor axial motion All 0.096 0.018 0.023 0.349 0.440

3 Cubes Speed Test Dyn. 7.65% 18.440 6.320 3.323 12.681 6.268
Textured; varying lateral motions All 3.131 0.916 0.501 2.363 1.390

3 Chairs Speed Test Dyn. 4.68% 10.686 2.562 3.647 9.979 5.540
Thin lines, varying lateral motions All 0.787 0.229 0.324 0.956 0.855

Occluded Cube Dyn. 3.63% 1.179 0.247 0.519 0.866 0.809
Lateral+minor axial motion All 0.130 0.088 0.114 0.388 0.647

Avg. reduction vs. C-ToF Dyn. - 7.3× 10.8× 1.8× 6.6×
As error factor, higher is better All - 5.8× 14.6× 1.8× 5.8×

with lateral motion, both our method and the 2D Flowed baseline are effective at
reducing motion error. Volume rendering depth d is less sharp, increasing error
over dToF. Finally, Occluded Cube is more challenging for our method.

Qualitative Results. Our method resolves the motion artifacts in most scenes,
producing sharper reconstructions on dynamic objects like a falling pillow and
a swinging baseball bat (Figure 4 and Figure 5). The scenes with strong axial
motion (Arcing Cube, Axial Speed Test , Orthogonal Speed Test) show clearer
resolution of motion artifacts than baselines, with more correct depth and without
strong ghosting. Concerning textured objects, both synthetic 3 Cubes Speed Test
and real Target show false texture entering the depth reconstruction in baselines:
even though both scenes show planar objects with lateral motion, as the returned
intensity of the signal varies under motion from the texture, the induced depth is
incorrect. In our reconstruction, this artifact is removed. Fan is a challenging scene
since the fast rotational movement of the fan breaks our linear motion assumption.
Still, our method produces sharp outlines of fan blades, but generates an incorrect
depth prediction within the swept volume of the fan’s blades. Another challenging
scene is 3 Chairs Speed Test , where our model and 2D Flowed generates mild

12 M. Okunev and M. Mapeke et al.

C-ToF Depth 2D Flowed TöRF [2] Ours (Depth) Ours (Motion)

P
il
lo

w
B
as

eb
al

l
St

ud
yB

oo
k

Ju
m

pi
ng

Ja
ck

s
T
ar

ge
t

Fa
n

Fig. 5: Our approach reduces ghosting on dynamic objects by recovering
scene flow in real scenes. Real scenes showing different motion characteristics across
methods. Our method resolves motion artifacts better than baselines.

ghosting artifacts for the fastest chair (≥25 pixel disparity per raw frame), but
reproduces the other two chairs correctly. Finally, both neural reconstruction
methods in the test sometimes struggle to accurately place density in the scene,
e.g., the floor of Target .

Please see our supplemental video for most of our results, including raw quad
reconstructions, ablations, and superresolved time by interpolating scene flow.

Flowed Time of Flight Radiance Fields 13

5 Discussion

Co-located Light. The current model assumes that the light emitter is co-located
with the camera, when in fact the light source is to the side of the camera. This
induces slight inaccuracies to path length. More importantly, this can introduce
shadows around regions with depth discontinuities. In practice, our scene depths
are far enough that these effects can be ignored.

Network Capacity. In synthetic scenes with low disparity (Sliding Cube and
Occluded Cube), we note that TöRF demonstrates lower full frame depth error
than our method (Table 3). We suppose this is because our MLP must additionally
estimate a bi-directional velocity field with the same model capacity.

Static/Dynamic Separation. Some dynamic scene representations model static
and dynamic scene parts separately [2, 19]. This is effective under large baselines,
but challenging when baselines are small, requiring tricky regularization [36] or
additional semantic information [20]. As C-ToF may be noisy, this problem is
exacerbated. As such, we leave this for future investigation.

Flow at Every Integer Timespan. It is possible to supervise the 3D velocity field
across all pairs of matching phase offsets across integer timespans (e.g., Li

0 →
Li+1
0 , Li+0.25

1 → Li+1.25
1). However, this can quickly become computationally

prohibitive: GPU memory is a bottleneck in our system thanks to the 4× temporal
resolution, requiring expensive gradient paths back to the scene from every pixel;
it would require supervising our model at 4× the number of time moments
(integer and fractional) as opposed to only integer time moments.

Estimating Scattering Functions and Normals. When illuminating a scene with
a co-located point source, it is possible to estimate surface normal through
shading cues [3, 32]. In principle, this can also be achieved with a C-ToF camera,
by modelling the scattering function fp and normal n explicitly to account
for shading variations. However, even though much progress has been made in
recovering surface normals [35], estimating the normal typically requires large
variation in the illumination or viewpoint, which is not present in our case.

6 Related Work

Active Illumination and Neural Fields. Neural fields and volume rendering can
accurately simulate physically-based models for active illumination, improving
flexibility for the 3D reconstruction of complex scenes and objects. For example,
simply co-locating a point light source with a camera enables more accurate
recovery of surface normals and reflectance [3]. By structuring the incident
illumination, Li et al. [18] differentiably render multi-view structured light pattern
images to reconstruct 3D objects with a neural signed distance field, and Shandilya
et al. [32] demonstrate that neural fields can explicitly model raw structured light
images to recover scene geometry and additional scene properties such as surface
normals, and direct and indirect lighting components.

14 M. Okunev and M. Mapeke et al.

Time-of-flight cameras use the co-located illumination setup to recover scene
depth by measuring the time required for light to travel from the source, to the
scene, and back to the sensor. Neural fields based off of time-of-flight imaging has
been explored for C-ToF cameras [2], LiDARs [11], and SPAD sensors that form
transient measurements [23]. PlatoNeRF [16] directly models optical paths of two-
bounce signals captured from single-photon LiDAR [9], allowing reconstruction
of both visible and occluded geometry. In contrast to these works, we focus on
developing an approach to account for fast dynamics, specifically for the case of
C-ToF cameras that use multiple exposures to recover depth.

Motion Correction in Time-of-Flight Imaging. Several methods, such as Lindner
and Kolb [22], compensate for the motion artifacts based on 2D optical flow
only. However, the raw ToF measurements do not fulfill brightness constancy
requirements expected for optical flow, so normalization tricks are typically
applied. To tenably correct for errors, one approach is to constrain the motion
artifact corrections to certain types of motion. For example, the method by
Hussman et al. [12] is restricted to small (less than 1 meter) linear motion along
conveyor belts. Other methods, such as Hoegg et al.’s [10], restrict the motion
artifacts to only blurred areas. Schmidt’s method [31] detects and corrects motion
artifacts in ToF measurements based solely on temporal relations and temporal
derivatives in the raw ToF measurements. Their method is simple to implement,
and avoids expensive spatial operations. However, spatial information (such as
from the raw ToF measurements) captures additional cues that we can exploit in
ToF corrections, which we use in this work.

7 Conclusion

C-ToF cameras form depth measurements through multiple exposures, making
them susceptible to fast scene dynamics and producing depth errors as a result.
To overcome this, we present an approach to reconstruct a 4D neural time-of-flight
radiance field from raw frames. By explicitly modeling these individual exposures,
and through the use of a phase-invariant reprojection loss, we demonstrate the
ability to reduce depth errors on dynamic objects even with large disparities, as
demonstrated on both synthetic and real-world sequences. Besides C-ToF cameras,
there are several other imaging techniques that rely on multiple exposures,
including structured light systems [29], multi-exposure high-dynamic range (HDR)
imaging [14], and low-light imaging [21]. Our framework for dealing with dynamics
can potentially be extended to these other imaging regimes.

Acknowledgements MO, JT thank NSF CAREER 2144956 and Cognex. MM
acknowledges support from a Jack Kent Cooke Foundation scholarship, and BA
from a Meta Research PhD Fellowship. MOT thanks NSF CAREER 2238485.

Flowed Time of Flight Radiance Fields 15

References

1. Attal, B., Huang, J.B., Richardt, C., Zollhoefer, M., Kopf, J., O’Toole, M., Kim,
C.: HyperReel: High-fidelity 6-DoF video with ray-conditioned sampling. In: CVPR
(2023)

2. Attal, B., Laidlaw, E., Gokaslan, A., Kim, C., Richardt, C., Tompkin, J., O’Toole,
M.: TöRF: Time-of-flight radiance fields for dynamic scene view synthesis. In:
NeurIPS (2021)

3. Bi, S., Xu, Z., Srinivasan, P., Mildenhall, B., Sunkavalli, K., Hašan, M., Hold-
Geoffroy, Y., Kriegman, D., Ramamoorthi, R.: Neural reflectance fields for appear-
ance acquisition (2020), arXiv:2008.03824

4. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: Fewer views
and faster training for free. In: CVPR (2022)

5. Georgiev, M., Bregović, R., Gotchev, A.: Fixed-pattern noise modeling and removal
in time-of-flight sensing. IEEE Transactions on Instrumentation and Measurement
65(4), 808–820 (2015)

6. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1994)

7. Gupta, M., Nayar, S.K., Hullin, M.B., Martin, J.: Phasor imaging: A generalization
of correlation-based time-of-flight imaging. ACM Trans. Graph. 34(5), 156:1–18
(2015). https://doi.org/10.1145/2735702

8. Hansard, M., Lee, S., Choi, O., Horaud, R.P.: Time-of-Flight Cameras: Principles,
Methods and Applications. Springer (2012). https://doi.org/10.1007/978-1-
4471-4658-2

9. Henley, C., Hollmann, J., Raskar, R.: Bounce-flash lidar. IEEE Transactions on
Computational Imaging 8, 411–424 (2022). https://doi.org/10.1109/TCI.2022.
3174802

10. Hoegg, T., Lefloch, D., Kolb, A.: Real-time motion artifact compensation for pmd-
tof images. Proceedings of the Workshop on Imaging New Modalities, German
Conference of Pattern Recognition (GCPR) 8200, 273–288 (05 2013)

11. Huang, S., Gojcic, Z., Wang, Z., Williams, F., Kasten, Y., Fidler, S., Schindler, K.,
Litany, O.: Neural LiDAR fields for novel view synthesis. In: ICCV (2023)

12. Hussmann, S., Hermanski, A., Edeler, T.: Real-time motion artifact suppression in
TOF camera systems. IEEE Transactions on Instrumentation and Measurement
60(5), 1682–1690 (2011). https://doi.org/10.1109/TIM.2010.2102390

13. Jimenez, D., Pizarro, D., Mazo, M.: Single frame correction of motion artifacts in
PMD-based time of flight cameras. Image and Vision Computing 32(12), 1127–1143
(2014). https://doi.org/10.1016/j.imavis.2014.08.014

14. Kalantari, N.K., Ramamoorthi, R.: Deep HDR video from sequences with alternating
exposures. Comput. Graph. Forum 32(2), 193–205 (2019). https://doi.org/10.
1111/cgf.13630

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
16. Klinghoffer, T., Xiang, X., Somasundaram, S., Fan, Y., Richardt, C., Raskar, R.,

Ranjan, R.: PlatoNeRF: 3D reconstruction in Plato’s cave via single-view two-
bounce lidar. In: CVPR (2024)

17. Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-flight cameras in computer
graphics. Comput. Graph. Forum 29(1), 141–159 (2010). https://doi.org/10.
1111/j.1467-8659.2009.01583.x

18. Li, C., Hashimoto, T., Matsumoto, E., Kato, H.: Multi-view neural surface re-
construction with structured light. In: BMVC (2022), https://bmvc2022.mpi-
inf.mpg.de/0550.pdf

https://arxiv.org/abs/2008.03824
https://doi.org/10.1145/2735702
https://doi.org/10.1145/2735702
https://doi.org/10.1007/978-1-4471-4658-2
https://doi.org/10.1007/978-1-4471-4658-2
https://doi.org/10.1007/978-1-4471-4658-2
https://doi.org/10.1007/978-1-4471-4658-2
https://doi.org/10.1109/TCI.2022.3174802
https://doi.org/10.1109/TCI.2022.3174802
https://doi.org/10.1109/TCI.2022.3174802
https://doi.org/10.1109/TCI.2022.3174802
https://doi.org/10.1109/TIM.2010.2102390
https://doi.org/10.1109/TIM.2010.2102390
https://doi.org/10.1016/j.imavis.2014.08.014
https://doi.org/10.1016/j.imavis.2014.08.014
https://doi.org/10.1111/cgf.13630
https://doi.org/10.1111/cgf.13630
https://doi.org/10.1111/cgf.13630
https://doi.org/10.1111/cgf.13630
https://doi.org/10.1111/j.1467-8659.2009.01583.x
https://doi.org/10.1111/j.1467-8659.2009.01583.x
https://doi.org/10.1111/j.1467-8659.2009.01583.x
https://doi.org/10.1111/j.1467-8659.2009.01583.x
https://bmvc2022.mpi-inf.mpg.de/0550.pdf
https://bmvc2022.mpi-inf.mpg.de/0550.pdf

16 M. Okunev and M. Mapeke et al.

19. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time
view synthesis of dynamic scenes. In: CVPR (2021)

20. Liang, Y., Laidlaw, E., Meyerowitz, A., Sridhar, S., Tompkin, J.: Semantic attention
flow fields for monocular dynamic scene decomposition. In: ICCV (2023)

21. Liba, O., Murthy, K., Tsai, Y.T., Brooks, T., Xue, T., Karnad, N., He, Q., Barron,
J.T., Sharlet, D., Geiss, R., et al.: Handheld mobile photography in very low light.
ACM Trans. Graph. 38(6), 164–1 (2019)

22. Lindner, M., Kolb, A.: Compensation of motion artifacts for time-of-flight cameras.
In: Workshop on Dynamic 3D Imaging. LNCS, vol. 5742, pp. 16–27 (2009). https:
//doi.org/10.1007/978-3-642-03778-8_2

23. Malik, A., Mirdehghan, P., Nousias, S., Kutulakos, K., Lindell, D.: Transient neural
radiance fields for lidar view synthesis and 3D reconstruction. In: NeurIPS (2024)

24. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing scenes as neural radiance fields for view synthesis. Com-
munications of the ACM 65(1), 99–106 (2021)

25. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A.,
Kaplanyan, A., Steinberger, M.: DONeRF: Towards real-time rendering of compact
neural radiance fields using depth oracle networks. Computer Graphics Forum
40(4), 45–59 (2021)

26. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. pp. 5437–
5446 (2020)

27. Pediredla, A., Veeraraghavan, A., Gkioulekas, I.: Ellipsoidal path connections for
time-gated rendering. ACM Trans. Graph. 38(4), 38:1–12 (2019). https://doi.
org/10.1145/3306346.3323016

28. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory
to Implementation. Elsevier, 3rd edn. (2016), https://www.pbr-book.org/

29. Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light
systems. Pattern Recognition 37(4), 827–849 (2004)

30. Schelling, M., Hermosilla, P., Ropinski, T.: Weakly-supervised optical flow estima-
tion for time-of-flight. In: WACV (2023)

31. Schmidt, M.: Analysis, Modeling and Dynamic Optimization of 3D Time-of-Flight
Imaging Systems. Ph.D. thesis, University of Heidelberg (2011)

32. Shandilya, A., Attal, B., Richardt, C., Tompkin, J., O’Toole, M.: Neural fields for
structured lighting. In: ICCV. pp. 3512–3522 (2023). https://doi.org/10.1109/
ICCV51070.2023.00325

33. Teed, Z., Deng, J.: RAFT: Recurrent all pairs field transforms for optical flow. In:
ECCV (2020)

34. Teed, Z., Deng, J.: RAFT-3D: Scene flow using rigid-motion embeddings. In: CVPR
(2021)

35. Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J.T., Srinivasan, P.P.:
Ref-NeRF: Structured view-dependent appearance for neural radiance fields. In:
CVPR (2022)

36. Wu, T., Zhong, F., Tagliasacchi, A., Cole, F., Oztireli, C.: D2NeRF: Self-supervised
decoupling of dynamic and static objects from a monocular video. In: NeurIPS
(2022)

37. Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F.,
Tompkin, J., Sitzmann, V., Sridhar, S.: Neural fields in visual computing and
beyond. Computer Graphics Forum (2022). https://doi.org/10.1111/cgf.14505

https://doi.org/10.1007/978-3-642-03778-8_2
https://doi.org/10.1007/978-3-642-03778-8_2
https://doi.org/10.1007/978-3-642-03778-8_2
https://doi.org/10.1007/978-3-642-03778-8_2
https://doi.org/10.1145/3306346.3323016
https://doi.org/10.1145/3306346.3323016
https://doi.org/10.1145/3306346.3323016
https://doi.org/10.1145/3306346.3323016
https://www.pbr-book.org/
https://doi.org/10.1109/ICCV51070.2023.00325
https://doi.org/10.1109/ICCV51070.2023.00325
https://doi.org/10.1109/ICCV51070.2023.00325
https://doi.org/10.1109/ICCV51070.2023.00325
https://doi.org/10.1111/cgf.14505
https://doi.org/10.1111/cgf.14505

Flowed Time of Flight Radiance Fields 1

A Additional Details

Fixed Pattern Noise. One source of noise associated with sensors (including those
used in C-ToF cameras) is fixed-pattern noise [5]. This noise originates from
spatial non-uniformities with the physical sensor pixels themselves, resulting in
differences in their response to light. The raw images captured by our C-ToF
camera also have fixed noise pattern, which we model as a per-pixel offset in the
intensity. When computing C-ToF derived depth, these fixed patterns in the raw
frames are typically cancelled out within the computation of the phase offset
(Equation 1). Given that our method uses the raw frames directly, it is important
to run a pre-processing step that subtracts the fixed-pattern noise from the raw
frames. We calculated the fixed-pattern noise by (i) capturing four raw images
of a static scene, and (ii) averaging the result. Figure 7 demonstrates the raw
images before and after fixed pattern noise calibration.

Data Normalization. To eliminate outliers in the real data, usually resulting
from oversaturated pixels in the sensor, we use a two-step normalization process.
Through empirical observation, this improves the quality of the 4D volume
reconstruction. Initially, we normalize the raw ToF captures by normalizing the
amplitudes of all the quartets to be between [0, 1] using the maximum amplitude

Table 2: Mathematical symbol legend.

Symbol Description

x A point ∈ R3.
ω A direction; unit vector ∈ S2.
xt A point t units along a direction ω, xt = x+ ωt.
ωi A direction incoming to a point.
ωo A direction outgoing from a point.
ψ C-ToF phase, linearly related to distance.
ϕ Field offset ∈ {0, π

2
, π, 3π

2
}.

τ Timestep associated with each frame.
La Amplitude of returned/reflected light.
Lϕ Raw quad using field offset ϕ.
Lτ=1

ϕ=0 Raw quad using field offset ϕ = 0 at timestep τ = 1.
Lϕ Quartet of raw quad images.
v(x, τ) Velocity vector ∈ R3 at point x and time τ .
u(x,ω, τ) Projected integrated scene flow ∈ R2 for a ray

from point x in direction ω at time τ .
D(τ = t) Integrated depth map at time t

L(x,ω) or L(x,ω, τ) Radiance measured by a camera at point x in direction ω.
σ(x) or σ(x, τ) Density function at a point.
T (x,xt) or T (x,xt, τ) Transmittance function, i.e., accumulated density.
W (p) Importance function for light path of length p.

2 M. Okunev and M. Mapeke et al.

Fig. 6: Different Depth Output Examples from Arcing Cube and Target
Left: Depth dToF derived via rendered raw frames. In real sequence Target , the scene’s
range exceeds C-ToF range and we see phase wrapping. Rendering raw frames from our
4D scene reconstruction cannot automatically unwrap phase because depth in dToF is
still derived via Eq. 1. Right: Depth d is produced by volume rendering density σ as
depth via Eq. 7. d can be fuzzy because σ is only indirectly optimized. Please see our
supplemental video for additional results.

Fig. 7: Removing fixed-pattern noise. Top: Raw images of a hallway captured
with a C-ToF camera. These images are averaged to compute the fixed-pattern noise
associated with this sensor. Bottom: Same raw images of the scene, after subtracting
the fixed-pattern noise.

Flowed Time of Flight Radiance Fields 3

Table 3: Ablations. Synthetic scenes; showing MSE×100. Variations:
- No OF Loss: No optical flow loss Lu.
- Single Stage: Optimizing the velocity field from the beginning, rather than after a set
of iterations with zero velocity.
- No Color: Without the input color channel as an additional loss.
- No Repro.: Without using the phase-aware reprojection loss.
- Ours: Full model.

Scene No OF Loss Single Stage No Color No Repro. Ours

Arcing Cube Dyn. 12.186 10.679 10.906 62.834 13.310
All 1.330 1.132 1.155 92.070 1.256

Axial Speed Test Dyn. 5.008 3.386 3.773 4.589 3.430
All 1.067 0.812 0.917 4.101 0.938

Orthogonal Speed Test Dyn. 28.958 24.008 107.507 82.382 33.021
All 8.673 9.082 24.735 39.838 7.527

Sliding Cube Dyn. 1.427 1.319 1.134 0.965 1.080
All 0.431 0.503 0.441 2.370 0.440

3 Cubes Speed Test Dyn. 10.485 6.336 10.556 7.256 6.268
All 2.057 1.463 2.402 5.484 1.390

3 Chairs Speed Test Dyn. 5.337 6.105 6.743 11.099 5.540
All 0.868 0.990 1.066 2.946 0.855

Occluded Cube Dyn. 1.303 1.166 1.818 4.281 0.809
All 0.853 0.691 0.871 1.894 0.647

observed across all frames within a scene. For real data, then, we truncate values
exceeding 0.1 and perform the same amplitude normalization again.

DC Offset. As our method directly uses raw frames, we must correctly account
for average amount of light emitted—the so-called DC offset—around which the
sinusoidal emission varies. We estimate the intensity of the emitter’s light source
as a constant additive value present in the captured signal: light intensity has
the non-negative signal 1

2 sin(2πft) + C, where C represents the DC offset (cf.
idealized model in main paper). In synthetic scenes, we render the raw frame
quartets with a fixed DC offset C = 0.5. In real scenes, the value of the DC
offset is unknown, so we optimize a predicted DC offset during training after
initializing it to zero.

Reprojection Loss Cost. We supervise the density field at integer time moments
only (aligned with the capture of L0); that is, we reproject the density field
at integer time moments to recreate the appearance of Lπ

2
, Lπ, and L 3π

2
. In

principle, we can penalize reprojection losses to optimize the scene density at any
and all fractional time moments; however, in practice, this is too computationally
and memory expensive. Similarly, we could supervise the motion using 2D flow

4 M. Okunev and M. Mapeke et al.

Fig. 8: Dynamic Mask Example from Arcing Cube. Left: Frame at integer time
moment. Right: Dynamic mask spanning an integer unit of time. The dynamic mask
captures the object’s geometry during motion across the quartet. These masks are used
to evaluate depth MSE metrics on dynamic regions.

computed between all pairs of matching quads; in practice, we use only L0 to
reduce expense.

Temporal Superresolution. The explicit motion modeling allows us to interpolate
density to an arbitrary time moment and increase the temporal resolution of the
original video. For example, to generate a depth map at the novel time moment
j, we blend depth maps reprojected from the two nearby integer time moments i
and i+ 1:

D(τ = j) = (1− δ) ·Di→j(τ = j) + δ ·D(i+1)→j(τ = j), (16)

where δ = j − i and j ∈ [i, i+ 1]. Please see the supplemental videos for example
temporally-superresolved videos.

Dynamic Masks. To compute the dynamic masks used to evaluate the Depth MSE
on synthetic scenes, we generate ground-truth motion vectors for each quartet,
{L0, Lπ, Lπ

2
, L 3π

2
}. Then, we mask pixels with no motion, and then union the

masks to produce an integer-timestep aligned mask. This allows the dynamic
masks to capture both the dynamic object’s true location and the regions where
motion artifacts are expected (assuming synchronous capture). Figure 8 shows
an example of this.

Velocity Regularizations. Following NSFF [19], we apply regularizations Lreg to
the flow to encourage flow smoothness and symmetry. Cycle consistency minimizes
the summation of forward and backward scene flow for corresponding points
across time :

Lcyc =
∑︂
i∈N

∑︂
x

⃦⃦⃦
vf(x, τ = i) + vb(x

i→(i+1), τ = (i+ 1))
⃦⃦⃦
1

+
⃦⃦⃦
vb(x, τ = i) + vf(x

i→(i−1), τ = (i− 1))
⃦⃦⃦
1
.

(17)

Flowed Time of Flight Radiance Fields 5

Temporal smoothness minimizes the summation of forward and backward
scene flow for each point in the volume:

Ltemp =
∑︂
i∈N

∑︂
x

∥vf(x, τ = i) + vb(x, τ = i)∥22 . (18)

We use L1 regularization of the velocity field,

Lmin =
∑︂
i∈N

∑︂
x

∥v(x, τ = i)∥1 , (19)

to encourage minimal motion, i.e. a static reconstruction wherever feasible. The
final velocity regularization loss is

Lreg = λcycLcyc + λtempLtemp + λminLmin, (20)

with hyperparameters set to λcyc = 0.0001, λtemp = 0.001, λmin = 0.001.

Integrating RGB Cameras. Following Equation 5, the presented formulation can
be extended to integrate color cameras, too [2]. For instance, the StudyBook data
sequence from Attal et al. includes this extra information. As the color sensor
is offset slightly from the C-ToF sensor, the density σ is subtly supervised by
small-baseline multi-view constraints under the assumption that σ can be shared
between the infrared ToF and color channels. Adding a moving color camera can
overcome phase wrapping and lead to denoised and superresolved density fields—
this is notable in the significantly higher quality of density reconstruction in the
StudyBook sequence (supplemental video). We label the color reconstruction loss
LRGB and its equivalent reprojection loss Li→j

RGB.
In the presence of an RGB signal, stage 1 of the optimization penalizes

L = λϕLϕ + λRGBLRGB, (21)

where Lϕ is a loss from Equation 14. For stage 2, we penalize

L =
∑︂
i,j

λϕLi→j
ϕ + λuLu + λRGBLRGB +

∑︂
i,k

λRGBLi→k
RGB, (22)

where i and k are integer timesteps such that |i − k| = 1 and j is a fractional
timestep, such that |i − j| < 1. The hyperparameters are set to λϕ = 10.0,
λu = 0.01, and λRGB = 1.0.

Model and Optimization. We parameterise Fθ(x,ω, τ) with an 8-layer MLP with
256 neurons each. Each input parameter is transformed with a 10-band positional
encoding. The MLP has separate heads for density, amplitude, and velocity. Stage
1 of the optimization occurs for 25–100K iterations, with 200K iterations in stage
2. Loss hyperparameters are set to λu=0.01, where the velocity network output
is initialized to be near zero and λu is decayed to zero during training. We use the
Adam optimizer [15] with β1=0.9, β2=0.999 and ϵ=10−7. We set the learning
rate to η = 2 · 10−4, and use a batch size of 1024 simulated through gradient
accumulation, since it empirically leads to better convergence. The training is
performed on a single RTX 3090 GPU with 24 GB of RAM and typically takes
three days.

6 M. Okunev and M. Mapeke et al.

color camera
C-ToF sensor

C-ToF light source

(a) Photo of setup (b) Color image

(c) C-ToF amplitude (d) C-ToF phase

Fig. 9: (a) Photo of the proposed hardware setup, consisting of a single ToF and a
color camera. (b) Color image from color camera. (c) Amplitude image; represents the
average amount of infrared light reflected by the scene. (d) Phase image; values are
approximately proportional to range.

B Experimental C-ToF Setup

Our hardware setup is the same as in Attal et al. [2]. Here, we reproduce text
from that paper as the details are the same.

The hardware setup shown in Figure 9(a) consists of a standard machine
vision camera and a time-of-flight camera. Our USB 3.0 industrial color camera
(UI-3070CP-C-HQ Rev. 2) from iDS has a sensor resolution of 2056×1542 pixels,
operates at 30 frames per second, and uses a 6 mm lens with an f/1.2 aperture.
Our high-performance time-of-flight camera (OPT8241-CDK-EVM) from Texas
Instruments has a sensor resolution of 320×240 pixels, and also operates at
30 frames per second (software synchronized with the color camera). Camera
exposure was 10ms. The illumination source wavelength of the time-of-flight
camera is infrared (850 nm) and invisible to the color camera. The modulation
frequency of the time-of-flight camera is ω = 30 MHz, resulting in an unambiguous
range of 5 m. Both cameras are mounted onto an optical plate, and have a baseline
of approximately 41mm.

We use OpenCV to calibrate the intrinsics, extrinsics and distortion coefficients
of the stereo camera system. We undistort all captured images, and resize the
color image to 640×480 to improve optimization performance. In addition, the
phase associated with the C-ToF measurements may be offset by an unknown
constant; we recover this common zero-phase offset by comparing the measured
phase values to the recovered position of the calibration target. For simplicity,
we assume that the modulation frequency associated with the C-ToF camera is

Flowed Time of Flight Radiance Fields 7

an approximately sinusoidal signal, and ignore any nonlinearities between the
recovered phase measurements and the true depth.

Along with the downsampled 640×480 color images, the C-ToF measurements
consist of the four 320×240 images, each representing the scene response to a
different predefined phase offset ϕ. For visualization in Figure 9, ToF amplitude
and phase images are computed from the quartet of raw frames.

	Flowed Time of Flight Radiance Fields

