
Monocular Dynamic Gaussian Splatting
is Fast and Brittle but Smooth Motion Helps

Yiqing Liang1, Mikhail Okunev1, Mikaela Angelina Uy2, Runfeng Li1,
Leonidas Guibas2, James Tompkin1, Adam W Harley2

1Brown University 2Stanford University

{yiqing_liang, mikhail_okunev, runfeng_li, james_tompkin}@brown.edu,
mikacuy@stanford.edu, {guibas, aharley}@cs.stanford.edu

Abstract

Gaussian splatting methods are emerging as a popular approach for converting
multi-view image data into scene representations capable of view synthesis. In
particular, there is great interest in enabling view synthesis for dynamic scenes using
only monocular input data—an ill-posed and challenging problem. The fast pace of
work in this area has yielded multiple simultaneous claims of which methods work
best, which cannot all be true. In this work we organize, benchmark, and analyze
many Gaussian-splatting-based methods, providing apples-to-apples comparisons
which prior work has lacked. We define the conceptual differences between the
methods and quantify how these details impact performance. Empirically we
find that the fast rendering speed of Gaussian-based methods appears to come
at the cost of brittleness in the optimizability. The rank-ordering of methods is
well-defined on synthetic data, but the complexity of real-world data currently
overwhelms differences in the methods. Overall, we lay groundwork for making
clearer progress in this lively domain.

1 Introduction

Every visual computing researcher and their dog seems to have published a paper on 3D Gaussian
Splatting in the past year, especially for the problem of dynamic scene view synthesis. One problem
setting with monocular cameras rather than multi-view cameras is highly ill-posed for dynamic
scenes; last year’s paper DyCheck [13] proposed metrics to better decide which data were truly
monocular. Yet, in the face of an ill-posed problem, many papers still claim superior performance
compared to their peers even with only minor methodological differences between them. This seems
implausible. Further, the lack of a shared evaluation benchmark and inconsistent dataset splits make
fair comparison between methods difficult if not impossible. We note that different papers even use
different dataset splits to highlight only the successes of their works on particular sequences.

Our work provides a more reliable snapshot of progress on the problem of dynamic view synthesis
for monocular sequences with Gaussian splatting approaches. We demonstrate that the performance
of these GS-based methods heavily depends on the sequence distribution, with significantly worse
results than previous work on certain datasets. To show this on sequences with reliably controlled
camera and object motion, we also quantify performance across methods using a small instructive
synthetic dataset. Further, we observe that many GS-based methods share almost-identical designs,
with the exception of small changes in motion modeling. We consolidate these methods to fairly
compare them. This reveals key factors that affect their performance, including the locality of the
motion models, the propensity of some methods to overfit, and their brittleness in optimization.

Public release. Along with code and the instructive synthetic dataset, we also created segmentation
masks and improved camera poses for existing datasets. These will all be released.

Preprint. Under review.



(b) Adaptive Density Control

Random 
Points

InitializeOr

Gaussians

Projection

Adaptive
Density 
Control

Camera

Rasterizer Image
SfM 

Points

M
ot

io
n

H
an

dl
er

Time

Temporal
Gaussians

(a) Static and Dynamic 3D Gaussian Splatting

Split

Operation Flow
Gradient Flow

Dynamics module Clone

Pruning Opacity Reset

Figure 1: Gaussian splatting with motion. a) Overview of 3D Gaussian Splatting. Adding motion
to static 3DGS typically modifies the pipeline only by adding a dynamics module, as marked by the
red box. b) Adaptive densification via cloning, splitting, and pruning Gaussians to reflect scene detail.
This brittle process often causes difficulties during optimization for monocular dynamic sequences.

2 Background
In this section we establish the specific background relevant to our experiments. We additionally
present a more comprehensive discussion of related work in the supplementary.

2.1 3D Gaussian Splatting (3DGS)
Gaussian splatting [20] represents a scene as a set of 3D anisotropic Gaussians allowing for high-
quality and fast view synthesis given only input images for a static 3D scene. Concretely, the scene
is represented as a collection of 3D Gaussians with underlying attributes, where each Gaussian
Gi = (xi,Σi, αi, ci) is parameterized with mean xi, covariance matrix Σi, opacity αi, and view-
dependent RGB color ci parameterized by 2nd-order spherical harmonic coefficients. The covariance
matrix Σi is factorized into a rotation matrix Ri derived from a unit quaternion qi ∈ R4, and scaling
vector si ∈ R3

+ to guarantee it to be positive semi-definite, giving Σi = Ridiag(si)diag(si)TRT
i .

These parameters are optimized directly given a set of images with known camera intrinsics K and
extrinsics V via gradient descent using differentiable rasterization. To form an image, the color of a
pixel (u, v) can be obtained by alpha-blending the contributions of the visible Gaussians {Gj}Nj=1

sorted by depth along the camera ray for pixel (u, v):

C(u, v) =
∑
j∈N

cjαjpj(u, v)

j−1∏
k=1

(1− αjpj(u, v)) , (1)

where pj(u, v) is the contribution of Gaussian Gj to pixel (u, v), which is the probability density of
the j-th Gaussian at pixel (u, v). To obtain pj(u, v) given camera intrinsic K and extrinsic V , the 3D
Gaussian Gj = N (xj ,Σj) is approximated by a 2D Gaussian via linearization of the perspective
transformation [59]. This gives the 2D mean x′

j = KV xj ∈ R2 and covariance Σ′
j = JV ΣjV

TJT ,
where J is the Jacobian of the perspective projection.

To balance rendering quality and computational efficiency, 3DGS uses adaptive densification via
periodically performing cloning, splitting, and pruning of the Gaussians (Figure 1). The optimization
requires the static scene to be observed from multiple viewpoints such that 3D Gaussians can converge
to the underlying 3D scene geometry even under the ambiguity from 2D projection. This makes it
extremely challenging for both the monocular and dynamic setting. Further difficulty is introduced in
non-Lambertian scenes where view-dependent scene elements such as mirrors or glossy objects as
Gaussians can be mistakenly placed to hallucinate reflections.

2.2 Gaussian Splatting for Dynamic View Synthesis
Extending 3DGS methods to dynamic scenes from monocular input requires a prime decision in how
to represent time t (or spacetime). For instance, what kind of model is used to describe Gaussian
motion, whether that model applies to Gaussians individually or collectively, whether motion is offset
from a single timestep or from a canonical space representing all time, or even whether to use a
motion model at all (‘3D+motion’) or simply to represent a 4D space. Methods must also decide
which Gaussian parameters to change over time, e.g., position, rotation, typically via offsets δGi,t.
The choice of motion design can significantly impact the expressiveness, efficiency, and robustness
of the overall dynamic 3DGS system.

2



Table 1: Overview of existing dynamic GS-based methods. We organize and summarize the type,
motion model and list of monocular datasets tested on by the different methods.

Method Ref. Type Motion model Monocular; tested datasets

Dynamic 3D Gaussians [34] Iterative - ✗ -
3DGStream [44] Iterative - ✗ -

RTGS [55] 4D - ✓ dnerf
Rotor-Based 4DGS [8] 4D - ✓ dnerf

SpaceTimeGaussians [26] 3D+motion Poly+RBF ✗ -
GauMesh [51] 3D+motion HexPlane ✗ -
GauFRe [29] 3D+motion MLP ✓ dnerf, hypernerf, nerfds
Deformable-GS [54] 3D+motion MLP ✓ dnerf, hypernerf, nerfds
4DGS [50] 3D+motion HexPlane ✓ dnerf, hypernerf
EffGS [19] 3D+motion Fourier+Poly ✓ dnerf, hypernerf
DynMF [23] 3D+motion Fourier+MLP ✓ dnerf, hypernerf
Gaussian-Flow [30] 3D+motion Fourier+Poly ✓ dnerf, hypernerf
GaGS [33] 3D+motion Voxel+MLP ✓ dnerf, hypernerf
E-D3DGS [1] 3D+motion MLP ✓ hypernerf

Motion reference frame. Iterative approaches assume that Gaussian motion over time can be
optimized from some reference timestep (typically t = 0) in which Gaussians are already well-placed.
Liuten et al. first showed multi-view dynamic 3DGS [34] by updating Gaussian parameters one frame
at a time. We might define a discrete function f to query at each time t to obtain Gaussian offsets:

f(i, 0) = Gi , f(i, t) = f [i, t− 1] + δGi,t. (2)Train GT Train Render Test GT Test Render

Fr
am

e
0

Fr
am

e
15

Figure 2: Iterative method on monocular input.

This approach relies upon the reference frame be-
ing well reconstructed, such as from multi-view in-
put, otherwise errors can be propagated across time
(Fig. 2). Instead, canonical methods ([54, 50, 23,
29, 1, 33]) assume 3D Gaussians are offset from an
embedding that represents all of time. This helps for
monocular cameras where multi-view constraints
must be formed over time. Effectively, all monocu-
lar methods use some form of canonicalization.

Motion complexity. Motion itself may be represented with varying complexity, defined by a function
of time t. For instance, we could define Gaussian motion to be linear over time, which would only be
able to describe basic motions. A piecewise-linear model could explain many motions—e.g., Luiten
et al.’s Dynamic 3D Gaussian work is effectively piecewise linear [34] as Gaussian positions vary
over integer timesteps. But, for monocular input, in practice authors must try to find low-dimensional
‘sweet spot’ functions that can constrain or smooth the ill-posed motion optimization.

Curve methods use a polynomial basis of order L to define a f over time that determines Gaussian
offsets [30]. f could also use a Fourier basis [19] or a Gaussian Radial Basis [26]. Most of these
typically use low order, where L = 2 or even L = 1. A Gaussian motion function could also be
defined by a multi-layer perceptron (MLP); for instance, a ReLU MLP would be a piecewise-linear
model with changes at arbitrary points in continuous time rather than at discrete integer times.

Motion complexity is important to reconstruction quality and computational speed. It also affects
the success of optimization as it determines motion smoothness. For instance, MLP-based method
are robust function fitters with self-regularization properties, but come with a higher computational
burden. In our survey, we found that function complexity like the polynomial order was not always
reported, making it difficult to consider these trade-offs.

Motion locality. As 3D Gaussian splatting is primitive based, many dynamic approaches define
motion models also as a per-Gaussian property. This extends the parameter set of each Gaussian by
the parameters of the motion model, which can be costly in terms of memory, and ignores the spatial
implications of motion: that nearby primitives may move together.

Field-based approaches [52] attempt to encapsulate this idea by using a function to estimate the entire
motion field. Gaussians then query this field by their position and time or by an embedding vector.

3



Fields can be advantageous in that the number of parameters in the motion model is independent of
the number of Gaussians, and that the field can enforce smoothness between Gaussians directly by
the complexity of the motion function.

One popular approach is to use field embeddings to represent both locality in space and motion over
time [29, 54, 50, 33]. For instance, a continuous deformation field encoded by an MLP fθ might take
as input each Gaussian Gi’s embedding zi and t to produce an offset:

fθ(zi, t) = δGi,t , Gi,t = Gi + δGi,t (3)

As they represent volumes of continuous space, field-based approaches can exploit ideas from volume-
based NeRF literature, such as voxel [33] and HexPlane [50] structures. These discrete data structures
can also help to aggregate information and accelerate indexing.

Finally, intermediate approaches have begun to aggregate motion model parameters over local
Gaussian neighborhoods [24]. In general, there are many schemes to model both motion complexity
and locality, but it helps to consider how both space and time are represented and smoothed.

Higher dimensionality instead of motion. Another alternative instead of modelling motion together
with 3D Gaussians is to define Gaussians directly in 4D space [55, 8]: mean xi ∈ R4 and covariance
matrix Σi ∈ R4×4. This representation couples the space (R3) and time (R) dimensions. To optimize
this representation through rendering, the 4D Gaussians are first conditioned on or projected to a
given time t to obtain 3D Gaussians; then, these can be rendered and compared to the 2D images at
the given timeframes. 4D methods are flexible and can describe complex dynamic scenes. However,
as there are many possible projections of plausible motions within the 4D space, these models may
be difficult to fit correctly with the few constraints provided by monocular input. Moreover, the
representation also does not have inherent smoothness or locality constraints.

3 Evaluation Setup
3.1 Datasets
Video sequence variations can affect performance significantly within and across datasets. Scenes
with small scene motion only or large camera motion relative to object motion are easier than
sequences with large scene motion and small camera motion, and scenes with highly-textured objects
are easier to reconstruct but require more Gaussians. To gain as much variation as possible, we
collect all common datasets used across current papers. Our supplemental material provides a fuller
description and examples of each, and we will briefly explain key differences here.

D-NeRF ([39]) shows synthetic objects captured by 360-orbit inward-facing cameras against a white
background (8 scenes). Nerfies ([37]) (4 scenes) and HyperNeRF ([38]) (17 scenes) data contain
general real-world scenes of kitchen table top actions, human faces, and outdoor animals. NeRF-
DS ([53]) contains many reflective surfaces in motion, such as silver jugs or glazed ceramic plates
held by human hands in indoor tabletop scenes (7 scenes). The iPhone dataset from DyCheck ([13])
(14 scenes) has large dynamic objects often undergoing large motions, with relatively small camera
motions. In total, these comprise 50 scenes.

Instructive synthetic dataset. We also create a simple synthetic dataset as an instructive aid on
which scene parameters cause methods to struggle. These scenes contain a textured cube, textured
background wall, and a moving camera. Each scene is 60 frames. In SlidingCube, the cube accelerates
from stationary along a straight line to cover different distances D ∈ {0, 5, 10}. The camera moves
around the cube in an arc with a total baseline B ∈ {1, 3, 5, 10, 20}. The camera rotates to track the
cube at all times. In RotatingCube, the cube additionally rotates along its vertical axis by π radians.

3.2 Metrics
For view synthesis, we use image quality metrics of peak signal-to-noise ratio (PSNR), Structural
Similarity Index (SSIM) [48] and its variant Multi-Scale SSIM (MS-SSIM) [49], and learned per-
ceptual metric LPIPS [58] using the AlexNet-trained features. We also report training and rendering
time in seconds. Existing research typically reports a metric as a mean average over sequences with
one optimization attempt; we also report the standard deviation of three independent optimizations.
To fairly compare train time and rendering speed, we use Nvidia GeForce RTX 3090 cards.

Static vs. dynamic. Static scene areas imaged by a moving camera may have enough constraints
for reconstruction, and if these areas are large then they will dominate the metric. So, to demonstrate
reconstruction quality on dynamic regions only, we compute per-frame binary dynamic masks using
SAM-Track [5] and report masked metrics mPSNR, mSSIM, mMS-SSIM and mLPIPS.

4



3.3 Methods
We compare all works thus far, e.g., in Table 1. that span different methods, apply to monocular input,
and had official code (as of June 2024, time of paper writing).

1. Local low-order poly: EffGS [19] uses a 2-order fourier basis and a 1-order polynomial basis per
Gaussian to model motion.

2. Local low-order RBF: SpaceTimeGaussians [26] or STG uses a radial basis function, 3-order
and 1-order polynomial basis per Gaussian to model motion. This method uses a small MLP to
decode color; we remove this for fairer comparison and label it STG-decoder.

3. Field MLP: DeformableGS [54] uses an MLP to estimate Gaussian offsets from a deformation
field; the MLP is shared among all Gaussians.

4. Field HexPlane: 4DGS [50] discretizes and factorizes the field with a HexPlane [3]; this is shared
among all Gaussians.

5. 4D Gaussian: RTGS [55]; this has no explicit motion model.

To minimize differences in implementation except for the motion model, we integrate these algorithms
into a single codebase. For hyperparameters, we follow the original works closely, e.g., we use
separate hyperparameters for synthetic and real-world scenes (see supplemental material).

Baselines: We also evaluate 3DGS without any motion, as adding a motion model might make results
worse. We also include TiNeuVox [10] as a comparison point for what a voxel feature grid method
can accomplish on dynamic scenes, even if it cannot be rendered quickly.

4 Results
We present our main findings and include full details in the supplemental material. To help frame our
findings, we note that our implementations approximately match the results of the original works on
their reported datasets. We also note that most dynamic Gaussian methods do not report performance
across all datasets, and no dynamic Gaussian method has yet reported performance metrics on the
iPhone dataset, so the comparisons made possible by this full-slate evaluation are of special interest.

4.1 Finding 1: Gaussian Methods Struggle In Comparison to a Hybrid Neural Field
We begin our analysis by evaluating all methods on all datasets. We present a summary of the findings,
averaged across 5 datasets, in Table 2. The full results are available in supplementary.

Table 2: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across all five datasets.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 24.54 0.706 0.804 0.349 0.29 2664.89
3DGS 19.48 0.651 0.688 0.358 243.47 2964.81

EffGS 21.84 0.672 0.725 0.347 177.21 3757.81
STG-decoder 21.81 0.678 0.742 0.352 109.42 5980.64
STG 19.51 0.583 0.643 0.475 181.70 5359.56
DeformableGS 24.07 0.694 0.755 0.283 20.20 6227.43
4DGS 23.55 0.708 0.765 0.277 62.99 8628.89
RTGS 21.61 0.663 0.720 0.350 143.37 7352.52

From this summary, we can make the broad and sobering observation that TiNeuVox, a non-Gaussian
method, regularly outperforms all Gaussian methods in image quality. TiNeuVox also trains quickly
and converges reliably, as compared to the Gaussian methods. The main drawback of TiNeuVox is
simply its rendering time, operating at 0.3 FPS compared to 20–200 FPS for the Gaussian methods.
The speed difference is due to the rasterization in 3DGS versus volume rendering in NeRF.

4.2 Finding 2: Low-dimensional motion representations help
Comparing motion-based and 4D representations in Table 2, it appears that local, low-dimensional
representations of motion perform better than less-constrained systems.

Motion locality helps quality. Comparing Gaussian methods on the LPIPS metric, we can observe
that the field-based methods (DeformableGS & 4DGS) perform better than the methods which attach
motions to individual Gaussians (EffGS & STGs) in rendering quality.

5



Figure 4: Per-dataset Quantitative Results. Figure shows the test set LPIPS along with error bars
for all methods on each of the different datasets. Note that lower is better. We see that the datasets
have different winning methods. Train GT Train Render Test GT Test Render

Figure 3: RTGS overfits to training views

Motion representation complexity
hurts efficiency. Comparing methods
on training time and rendering speed, we
find that basis-based methods (EffGS &
STGs) are faster to train and faster to
render than MLP-based methods (De-
formableGS & 4DGS).

Going to 4D makes things worse. The 4D Gaussian approach, which is the most expressive
representation of spacetime, performs worst in both quality and efficiency. This is consistent with our
expectations established in Section 2.1. We qualitatively demonstrate this effect in Figure 3.

4.3 Finding 3: Dataset Variations Overwhelm Gaussian Method Variations
Inspecting the results of Gaussian methods across datasets, we find, contrary to the claims in the
individual works, that a rank-ordering of the methods is unclear. We plot the per-dataset performance
metrics in Figure ??, and note that the datasets have different winning methods. We observe that
4DGS and DeformableGS perform relatively well, but their performance across datasets varies greatly.

4.4 Finding 4: Adaptive Density Control Causes Headaches
As discussed in Section 2.1, a key detail of Gaussian Splatting methods is adaptive density control:
Gaussians are added and removed during optimization, according to carefully tuned heuristics,
allowing the complexity of the representation to adapt to the complexity of the data. The total number

Figure 5: # Gaussians after optimization for each dynamic
Gaussian method as a result of the adaptive densification.

of Gaussians after optimization varies
greatly across scenes (Figure 5). While
this feature adds expressivity to the over-
all representation, we find that it causes
noticeable brittleness, such that (1) the ef-
ficiency (in both optimization and render-
ing) can shift undesirably across scenes,
(2) the risk of overfitting increases, and (3) optimization occasionally fails completely. These factors
may explain why some prior works tune the number of Gaussians and the adaptive density settings
on a per-scene basis [20].

Figure 6: Convergence-frequency

Training and rendering efficiency varies greatly across
scenes. The optimization time for Gaussian Splatting meth-
ods varies greatly across scenes, with certain scenes consis-
tently optimizing quickly and others optimizing slowly, across
all methods. Further, the methods take significantly more
time to reconstruct real-world datasets (HyperNeRF, iPhone)
compared to the synthetic datasets. This factor is partially
explained by the frequency content of the data (Figure 6).
Scenes with a predominance of higher frequencies take longer
to optimize. For this analysis, we use a Fast Fourier Transform
(FFT) to transform each frame to the frequency domain, and
aggregate the magnitude spectrum from all images to calculate
the mean frequency.

Density adaptation makes overfitting worse. In Figure 7, we show the train-test performance
gap for all Dynamic Gaussian methods, along with 3DGS and TiNeuVox. For this evaluation, we

6



Figure 7: Train-Test Performance Gaps. We show the difference between the average LPIPS on the
train and test set, where a larger gap indicates more overfitting to the training sequence. Note that
here larger negative values indicate more severe overfitting.

Figure 9: Strictly-Monocular Dataset. Test metrics of the different methods on the strictly-
monocular iPhone dataset.

calculate LPIPs metrics for train and test set of the same sequence, and then substract test set metric
results from train set metrics. Larger quantities in this evaluation indicate wider train-test gaps, and
serve as an indicator for overfitting. The evaluation reveals that the methods with adaptive density
(i.e., all methods except TiNeuVox) have consistently wider train-test gaps. The only exception is in
the NeRF-DS dataset, where we hypothesize that the reflective objects in that data cause issues for all
methods, flattening the performance disparities between them.

Figure 8: Instability. Training frame, and ren-
derings from 3 runs of DeformableGS [54].

Density adaptation risks total failure. Density
changes can occasionally result in catastrophic fail-
ures with empty scene reconstructions (Figure 8).
Gaussians may be pruned due to their opacities be-
ing under a hand-chosen threshold, and once a sub-
stantial number are deleted then it is difficult to re-
cover the scene structure by subsequent cloning and
splitting. We find that this happens unpredictably;
we exclude these runs from our evaluation statistics.

4.5 Finding 5: Lack of Multi-View Cues Hurts Dynamic Gaussians More
Most datasets used for monocular dynamic view synthesis consist of data where there is a slow-
moving scene captured by a rapidly-moving camera. This circumstance allows methods to leverage
multi-view cues for optimization [13]. In contrast, the iPhone dataset aims to evaluate methods on
“strictly-monocular” scenarios, meaning that the camera is moving more naturally. Figure 9 quantifies
all methods’ performance on this dataset. Excepting for the perceptual metric LPIPS, all Dynamic
Gaussians perform worse than TiNeuVox by a large margin. This is consistent with our finding on
overfitting: since the Gaussian methods are more susceptible to overfitting, they are also more likely
to do poorly with data lacking Multi-View Clues.

4.6 Finding 6: Narrow Baselines and Fast Objects Cause Error
Camera and object motion can both influence reconstruction performance considerably [13]. This
is related to the amount of multi-view information available to constrain optimization, but can be
studied in detail with the help of our instructive synthetic dataset. Figure 11-left shows a high-level
overview of the performance of all methods, across different camera baselines and different motion

7



Figure 10: Specular Dataset. Test results on NeRF-DS, which includes reflective objects.

Figure 11: Results on our instructive synthetic dataset. Left: LPIPS heatmap (smaller is better)
shows how baseline scale and object motion range affect performance across all methods on average.
Decreasing object motion range (right to left) affects reconstruction performance positively; decreas-
ing camera baseline (bottom to top) has the same effect. Values over 0.3 usually represent a failure to
reconstruct the dynamic object. Right: Ranking of methods by average LPIPS over all scenes.

ranges. As the camera’s baseline decreases, and/or as the object motion increases, reconstructions
degrade. This result also holds for each method individually (see supplemental).

Figure 11-right summarizes LPIPs across methods and scenes in our instructive synthetic dataset.
Here, unlike in the complex real-world datasets (Table 2), we see a clear ranking emerge between
methods. We find that DeformableGS is the most reliable here, and RTGS the least reliable. We also
note that RTGS occasionally crashes during optimization, due to an out-of-memory error triggered as
a side-effect of the small-baseline setting. In sum, we find that all methods are sensitive to camera
baseline and the magnitude of the underlying motion, although the levels of robustness vary.

4.7 Finding 7: Specular Objects are a Challenge for All Methods
Yang et al. [54] highlighted that their DeformableGS method outpeforms previous state-of-art
methods on NeRF-DS dataset, including TiNeuVox. As NeRF-DS focuses on specular objects, this
might imply that other Gaussian methods are able to handle specular objects well. However, we
found that this is not the case (Figure 10). Generally, it is difficult for methods to distinguish between
specular effects and small object motions especially under small baselines.

4.8 Finding 8: Foreground/Background Separation Clarifies Static/Dynamic Results
Inspecting the 3DGS performance in table 2, we note that it is performing surprisingly well, consider-
ing that it is a static scene representation. This is partly because the moving foreground constitutes
a small fraction of the pixels in the given dataset sequences. We also find that 3DGS is able to
smuggle a pseudo-dynamic scene into its representation, by inserting Gaussians which only render
from certain viewpoints (and therefore only certain timesteps), and thereby reduce loss on dynamic
parts of the training images. Please see the supplementary material for visualizations of this effect.

8



Figure 12: Foreground-Only LPIPs Evaluation (↓).

To better evaluate Dynamic Gaussians’
advantage over 3DGS, we evaluate
mLPIPS, mPSNR, mSSIM and mMS-
SSIM (fig. 12). Comparing Figure 4
and Figure 12, we see that Dynamic
Gaussians’ performance does not change
much after masking, but 3DGS’s perfor-
mance worsens dramatically, suggesting
that the dynamic scene representations are indeed better at capturing the moving part of the scene.

5 Conclusion
With the emerging popularity of Gaussian splatting, multiple works were recently introduced simulta-
neously that tackle the challenging setting of dynamic scene view synthesis using only monocular
input, each claiming superior performance even with only minor methodological differences and
inconsistent evaluation settings. In this work, we organize, benchmark and analyze many of these
Gaussian splatting-based methods and provide a shared, consistent, apples-to-apples comparison
between them. We also define conceptual differences between these methods and analyze their impact
on a variety of performance metrics. We consolidate these methods and benchmark their performance
on instructive synthetic data and complex real-world data. This work may lead to broader societal
impact in areas such as video editing, visual art, and 3D scene analysis for industrial applications.

Limitations. Evaluations such as ours would benefit from being able to describe each sequence’s
complexity of reconstruction independently of any method’s individual performance upon that
sequence. With this, it would be simpler to find insights by correlating methods with scene difficulty.
We do not do this; past works have proposed some approaches (e.g., DyCheck’s Ω and ω [13]), but
this task is a chicken-and-egg problem: it invariably requires estimating scene geometry and motion,
which is our initial problem. Similarly, ground-truth evaluation of reconstructions such as for depth or
motion would also aid in this task; capturing ground truth is difficult for real world dynamic scenes.

9



6 Additional Results

Please download the webpage and check index.html for qualitative results on both existing datasets
and our instructive dataset.

6.1 Quantitative Results Per Dataset

Table 3: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across D-NeRF dataset.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 33.03 0.97 0.99 0.03 0.42 2582.54
3DGS 20.64 0.92 0.88 0.12 340.85 928.83

EffGS 30.52 0.96 0.98 0.04 289.47 1042.04
STG-decoder 25.89 0.91 0.90 0.17 160.32 3462.29
STG 17.09 0.88 0.66 0.29 208.98 4889.50
DeformableGS 37.14 0.99 0.99 0.01 50.78 2048.38
4DGS 33.27 0.98 0.99 0.02 134.13 1781.46
RTGS 28.78 0.96 0.96 0.05 192.37 1519.60

Table 4: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across HyperNeRF dataset.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 26.45 0.74 0.88 0.38 0.12 2604.45
3DGS 20.98 0.69 0.76 0.37 244.87 2587.02

EffGS 22.24 0.70 0.79 0.37 138.79 4119.66
STG-decoder 23.92 0.73 0.83 0.34 66.72 7423.41
STG 22.92 0.70 0.78 0.41 183.21 5729.80
DeformableGS 24.58 0.74 0.83 0.27 10.91 8855.46
4DGS 25.70 0.79 0.89 0.23 37.46 10170.86
RTGS 22.99 0.71 0.79 0.35 104.64 11507.80

Table 5: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across NeRF-DS dataset.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 21.54 0.83 0.81 0.22 0.49 2696.48
3DGS 20.29 0.78 0.73 0.28 353.99 1066.48

EffGS 21.28 0.78 0.77 0.25 307.70 1597.90
STG-decoder 21.73 0.80 0.81 0.20 212.24 2131.48
STG 20.13 0.69 0.72 0.39 302.89 2214.62
DeformableGS 23.42 0.84 0.88 0.16 30.27 2885.07
4DGS 20.25 0.73 0.72 0.24 100.22 4075.43
RTGS 19.88 0.75 0.73 0.30 259.83 3116.21

10

https://anonymous.4open.science/r/DyGauBench_web-849c


Table 6: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across Nerfies dataset.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 22.89 0.45 0.71 0.68 0.11 3145.67
3DGS 20.14 0.46 0.66 0.52 209.80 2823.33

EffGS 20.13 0.43 0.61 0.65 159.17 3249.33
STG-decoder 20.93 0.47 0.67 0.58 90.46 6050.42
STG 20.55 0.46 0.66 0.62 142.30 5264.58
DeformableGS 21.26 0.43 0.66 0.54 14.99 6950.94
4DGS 21.84 0.50 0.72 0.47 35.70 9797.50
RTGS 20.06 0.42 0.62 0.61 153.38 9059.54

Table 7: Summary of Quantitative Results. Table shows a summarized quantitative evaluation of
all methods averaged across iPhone dataset.

Method\Metric PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ FPS↑ TrainTime (s)↓
TiNeuVox 19.35 0.52 0.63 0.47 0.36 2632.17
3DGS 16.41 0.44 0.48 0.47 140.50 5777.45

EffGS 16.82 0.47 0.50 0.47 99.64 6275.33
STG-decoder 16.85 0.47 0.52 0.49 86.18 7694.83
STG 15.60 0.40 0.45 0.57 114.95 6629.64
DeformableGS 16.56 0.46 0.48 0.45 10.47 7278.28
4DGS 15.13 0.42 0.43 0.52 42.53 14205.48
RTGS 15.36 0.39 0.44 0.52 101.33 8484.05

11



6.2 Quantitative Result Plots Per Metric

6.2.1 PSNR

Figure 13: Per-dataset Quantitative Results. Test set PSNR along with error bars for all methods
on each of the datasets. (↑). We see that the datasets have different winning methods.

Figure 14: Foreground-Only PSNRs Evaluation (↑).

Figure 15: Train-Test Performance Gaps. We show the difference between the average PSNR on
the train and test set, where a larger gap indicates more overfitting to the training sequence.

12



6.2.2 SSIM

Figure 16: Per-dataset Quantitative Results. Test set SSIM along with error bars for all methods on
each of the datasets. (↑). We see that the datasets have different winning methods.

Figure 17: Foreground-Only SSIMs Evaluation (↑).

Figure 18: Train-Test Performance Gaps. We show the difference between the average SSIM on
the train and test set, where a larger gap indicates more overfitting to the training sequence.

13



6.2.3 MS-SSIM

Figure 19: Per-dataset Quantitative Results. Figure shows the test set MS-SSIM along with error
bars for all methods on each of the different datasets. Note that higher is better. We see that the
datasets have different winning methods.

Figure 20: Foreground-Only MS-SSIMs Evaluation (↑).

Figure 21: Train-Test Performance Gaps. We show the difference between the average MS-SSIM
on the train and test set, where a larger gap indicates more overfitting to the training sequence.

14



6.2.4 Train Time and FPS

Figure 22: Per-dataset Quantitative Results. Figure shows the test set Train Time along with error
bars for all methods on each of the different datasets. Note that lower is better. We see that the
datasets have different winning methods.

Figure 23: Per-dataset Quantitative Results. Figure shows the test set render FPS along with error
bars for all methods on each of the different datasets. Note that higher is better. We see that the
datasets have different winning methods.

15



6.3 Convergence-Frequency Relationships
Per Method

Figure 24: Convergence-frequency relationship
for TiNeuVox.

Figure 25: Convergence-frequency relationship
for 3DGS.

Figure 26: Convergence-frequency relationship
for 4DGS.

Figure 27: Convergence-frequency relationship
for STG.

16



Figure 28: Convergence-frequency relationship
for STG-decoder.

Figure 29: Convergence-frequency relationship
for DeformableGS.

Figure 30: Convergence-frequency relationship
for RTGS.

17



6.4 Ablations for Instructive Dataset

Figure 31: Individual ablations for the instructive dataset The figure shows camera baseline
and motion range ablations for each method separately using LPIPS↓ metric. On average the
reconstruction becomes harder with increase of the motion range (left to right) and with decrease of
the camera’s baseline (bottom to top).

18



7 Additional Data-related Details

Our work shows a greater set of comparisons than existing works as they typically only report on a
subset of the data by selection (Table 8).

Table 8: Previous works typically only report on a subset of data.

Method D-NeRF Nerfies HyperNeRF NeRF-DS iPhone

RTGS [55] ✓ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

DeformableGS [54] ✓ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓

4DGS [50] ✓ ✗ 4 of 13 ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

EffGS [19] ✓ ✗ 4 of 13 ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

STG [26] ✗ ✗ ✗ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

7.1 Dataset Descriptions

D-NeRF ([39]) is a synthetic dataset containing eight single-object scenes captured by 360-orbit
inward-facing cameras. Test views are rendered at unseen angles. The test set is misaligned in the
lego sequence, and so we use lego’s validation set for testing instead following [54].

Nerfies ([37]) and HyperNeRF ([38]) contain general real-world scenes of kitchen table top actions,
human faces, and outdoor animals. Thus far, most methods [50, 10] report results on four sequences
from the ‘vrig’ split of HyperNeRF dataset that uses a second test camera rigidly-attached to the
first, rather than the ‘interp’ split to render held-out frames from a single camera (an easier task).
Some works report their own sequence splits from HyperNeRF [23]. We include all 17 HyperNeRF
sequences and 4 Nerfies sequences unless otherwise noted.

The HyperNeRF data has known bad camera poses. To quantify the camera pose error’s effect on
reconstruction quality, we improve the camera poses in HyperNeRF by segmenting out moving
objects and highly specular regions and rerunning COLMAP; see Section 7.2.

NeRF-DS ([53]) contains many reflective surfaces in motion, such as silver jugs or glazed ceramic
plates held by human hands in indoor tabletop scenes. This contains seven sequences. Test sequences
are again generated by a second rigidly-attached camera. Lastly, the iPhone ([13]) dataset’s 14 scenes
include large dynamic objects often undergoing large motions, with relatively small camera motions.
Test views are from two static witness cameras with a large baseline difference.

We do not include the NVIDIA Dynamic Scene dataset [56] because they sub-sample fake monocular
camera sequences from a 12-camera wide baseline setup. This creates an unrealistically large degree
of scene motion between frames.

7.2 Erroneous Camera Pose

Camera pose is required as input for most dynamic Gaussians methods for monocular videos.
However, it’s difficult to measure precise poses with real-world dynamic videos, leading to pose
errors. Erroneous camera poses can be detected by simply applying static Gaussian Splatting [20]
to dynamic frames. If we observe blurry static background renderings as output, then this indicates
erroneous camera poses.

HyperNeRF [38] is a dataset that suffers badly from camera pose inaccuracy, as dynamic regions
were not masked for COLMAP [41] during their camera pose estimation. To address this problem,
we use SAM-Track [5] plus human labor to mask dynamic, reflective and textureless regions, and

19



B
ef

or
e

A
ft

er
G

ro
un

d-
Tr

ut
h

Figure 32: Comparison of ground-truth and static Gaussian Splatting [20] results on before and after
correcting the camera poses for HyperNeRF [38] scenes (vrig-chicken, slice-banana, vrig-3dprinter,
and keyboard). link

then rerun COLMAP with these masks and customized arguments for each scene. Figure 32 shows
improved static Gaussian rendering in background areas. Out of HyperNeRF’s 17 scenes, we improve
the camera poses in 7 scenes and slightly improve them in 3 scenes. We evaluate the pose quality
by reporting mPSNR of static 3DGS on static regions, using the inverse of our motion masks, as
summarized in Table 9.

We use No Diff/Worse group’s 7 sequences from fixed and corresponding 7 sequences from original
HyperNeRF dataset to show the effect of camera pose inaccuracy on reconstruction (Figures 33, 34,
35, 36). Performance is improved after pose fixes across for EffGS, STGs and RTGS. But, even
though static regions are now deblurred in the standard 3DGS rendering showing improved poses,
surprisingly not all method improve: TiNeuVox, DeformableGS, and 4DGS instead often become
worse. We are yet to explain this phenomenon.

20

https://docs.google.com/presentation/d/1x8DTroI7Zuc55SflZUBmfZKwMu2k5TCgklBf3BOH6ko/edit?usp=sharing


Result Ratio Used Scene Original Poses mPSNR Corrected Poses mPSNR

Better

2x chickchicken 22.290 23.503
2x cut-lemon1 24.053 24.809
1x keyboard 22.952 24.831
2x slice-banana 22.794 24.690
4x tamping 20.817 21.671
1x vrig-chicken 23.334 26.075
1x vrig-3dprinter 17.685 22.118

Slightly Better
2x aleks-teapot 22.343 22.543
1x broom2 21.987 22.810
2x cross-hands1 19.552 19.987

No Diff/Worse

1x americano 24.348 24.418
1x espresso 22.707 22.291
2x hand1-dense-v2 25.547 25.214
1x oven-mitts 25.565 19.891
1x split-cookie 24.389 24.277
2x torchocolate 23.345 18.356
2x vrig-peel-banana 23.427 22.251

Table 9: Static region masked PSNR results for HyperNeRF scenes before and after correcting the
camera poses. link

21

https://docs.google.com/spreadsheets/d/1l7Zde1rZ3bEj3Czjmc0WvYjUxh95zjkVTeUmbISj-es/edit?usp=sharing


Figure 33: PSNR Change on the same set of HyperNeRF sequences to show Camera inaccuracy’s
effect on reconstruction. Higher is better.

Figure 34: SSIM Change on the same set of HyperNeRF sequences to show Camera inaccuracy’s
effect on reconstruction. Higher is better.

Figure 35: MS-SSIM Change on the same set of HyperNeRF sequences to show Camera inaccuracy’s
effect on reconstruction. Higher is better.

Figure 36: LPIPS Change on the same set of HyperNeRF sequences to show Camera inaccuracy’s
effect on reconstruction. Lower is better.

22



8 Experimental Implementation

8.1 Shared Hyperparameters

Most of GS-related hyperparameters are inherited from 3DGS paper, and identical among algorithms
with objective function (Equation (4)):

L = ∥Ipred − Igt∥+ λSSIM · (1− SSIM(Ipred, Igt)), λSSIM = 0.2 (4)

For learning rates, people set spherical harmonics feature learning rate as 0.0025, opacity learning
rate as 0.05, scaling learning rate as 0.005, rotation learning rate as 0.001, position learning rate
as 0.00016 that exponentially decrease to 0.0000016 with learning rate delay 0.01, after 30000
iterations.

Gaussian densification starts from 500th training iteration, and ends until 15000th training iteration.
Densification gradient threshold is set to 0.0002. The spherical harmonics (SH) degree is set to be 3
in 3DGS, percent dense is set to be 0.01.

To align with dynamic Gaussian works’ implementation, a few hyperparameter might be different
from 3DGS default setting:

Batch size 3DGS’s default setting is to use batch size 1 during training. RTGS uses 4 for real-world
scenes, 4DGS uses 2 for real-world scenes, and SpaceTimeGaussians use 2 for all scenes.

Warm up stage DeformableGS, 4DGS and EffGS first fix the motion component, and train the static
part for the first 3000 steps.

Opacity reset During training, 3DGS set Gi’s opacity σi to 0 periodically every 3000 iterations during
densification phase. 4DGS disable this opacity reset action when dealing with real-world sequences.

Initialization Original 3DGS suggests initialize Gis with 100, 000 random points uniformly sampled
in space for synthetic scenes, and with structure-from-motion (SfM) [41] point cloud for real-world
scenes. RTGS suggests appending extra uniformly-sampled random point cloud to SfM point cloud
for a multi-view reconstruction dataset [25]. EffGS uses random point cloud in the place of SfM
point cloud for the same dataset. We follow 3DGS’s suggestion.

Apart from shared hyperparameters, each motion model also introduces extra hyperparameters.

8.2 Extra Hyperparameters: Deformation

Deformation Learning Rate starts from 0.00016, and exponentially decays to 0.0000016 with delay
multiplier 0.01 after certain steps. Deformation happens on position xi, scale si and rotation qi, with
σi, ci unchanged across time.

DeformableGS [54] Following original paper, we set network depth as 8; network width as 256;
time embedding dim as 6 for synthetic, 10 for real-world; position embedding dim as 10; time is
additionally processed with an embedding MLP with 3 layers, 256 width before feed into deformation
network for synthetic scene; exponential decay max step as 40000.

4DGS [50] Following original paper, we set network depth as 0 for synthetic, 1 for real-world; width
as 64 for synthetic, 128 for real-world; plane resolution as [1, 2] for synthetic, [1, 2, 4] for real-world;
exponential decay max step as 30000; plane TV loss weight as 0.0001 for synthetic, 0.0002 for
real-world; time smoothness loss weight as 0.01 for synthetic, 0.0001 for real-world; L1 time planes
loss weight as 0.0001; Grid Learning Rate similarly exponentially decay like Deformation Learning
Rate, except for going from 0.0016 to 0.000016; grid dimension as 2, input coordinate dimension as
4, output coordinate dimension as 16 for synthetic, 32 for real, grid resolution as [64, 64, 64, 100] for
synthetic, [64, 64, 64, 150] for real.

To stabilize training of deformation networks, we perform gradient norm clipping by 5.

23



8.3 Extra Hyperparameters: Curve

EffGS [19] uses Fourier Curve for xi motion, and Polynomial Curve for qi motion. Curve order is
set to 2 for xi, 1 for qi. An optical-flow-based loss is additionally introduced to augment eq. (4) only
for multi-view dataset, and here we do not include the flow loss as default.

STG [26] Original code is only supporting multi-view dataset as Gaussians are initialized by per-
frame dense point cloud. To extend to monocular case, we copy point cloud for 10 times along time
axis uniformly. During rendering, one option is to directly rasterize SH appearance as in 3DGS, but
another option is to rasterize feature instead, which would be later fed into a decoder network D to
generate color image. D’s trained alongside with learning rate 0.0001.

8.4 Details of Dynamic 3D Gaussian Implementation

We update the codebase from Luiten et al. [34] to support our evaluation across datasets. We use the
HyperNeRF scenes with our improved cameras poses to minimize the reconstruction error of static
areas.

9 Related Work

Dynamic scene reconstruction has been a longstanding problem in computer vision [36, 42, 28, 34].
Earlier works utilize accurate depth cameras [36, 42] and reconstruct a dynamic scene using a
monocular RGBD video. On the other hand, Joo et. al. [18] propose to use MAP visibility estimation
with a large number of cameras and correspondences from optical flow to reconstruct a dynamic
scene. In contrast, the focus of our study is on using a single-view RGB video to reconstruct dynamic
scenes without taking depth or correspondences as input.

Recently, neural radiance fields [35] (NeRFs) revolutionized 3D reconstruction allowing for the
reconstruction of a static 3D scene only given 2D input images. This success led to various extensions
onto the dynamic setting, i.e. the 4D domain [40, 46, 43, 27, 12, 13, 3, 11, 2, 16] by treating time as
an additional dimension in the neural field. Other relevant approaches include combining a 3D NeRF
representation with a learned time-dependent deformation field [32, 10, 37, 38, 17, 22, 47, 45] and
learning a set of motion basis [28] to optimize a dynamic scene.

The more recent explosion of works representing scenes with Gaussians [20, 21, 4] such as 3D Gaus-
sian Splatting (3DGS) [20] has led to a number of promising extensions to its scene representation
into the 4D domain which is the main focus of study in our work. As discussed in the earlier sections,
one option to extend static 3DGS is to model motion as a 3D trajectory through time, learning motion
by iteratively optimizing for per-Gaussian offsets into the next frame [34, 44, 9]. Methods also
represent these 3D trajectories differently such as using explicit motion basis [6, 19, 30, 26, 57] or
sparse control points [15]. Another line of works [50, 54, 29, 14, 33, 31, 7] learn a 3D Gaussians that
live in canonical space and optimize a time-conditioned deformation network to warp Gaussians from
canonical space to each timeframe. Lastly, a few works [8, 55] directly model Gaussians in 4D, i.e.
extending across space and time.

10 Mathematical Motion Model Definitions

10.1 Polynomial

Curve methods ([19, 30, 26]) may use a polynomial basis of order L to define a f over time that
determines Gaussian offsets, with coefficients ai,j , and time offset ti: Here, we denote gi of Gi as
the subset of parameters to change:

f(i, t) =

L∑
j=0

ai,j(t− ti)
j

Gi,t =

L∑
j=0

ai,j(t− ti)
j +Gi

(5)

24



10.2 Fourier

f could also use a Fourier basis with coefficients ai,j , bi,jj = 0L, and time offset ti:

Gi,t =

L∑
j=0

(ai,jsin(j(t− ti)) + bi,jcos(j(t− ti))) +Gi (6)

10.3 RBF

f could be a Gaussian Radial Basis function with scaling factor ci and time offset ti

Gi,t = Gi exp(−ci(t− ti)
2) (7)

10.4 RTGS’s 3D Rendering

RTGS [55] induces 3D world from 4D representation by obtaining the distribution of a 3D position
conditioned on a specific time t:

xi|t = xi[: 3] + Σi[: 3, 3]Σi[3, 3]
−1(t− xi[3]),

Σi|t = Σi[: 3, : 3]− Σi[: 3, 3]Σi[3, 3]
−1Σi[3, : 3]

(8)

25



References

[1] Jeongmin Bae, Seoha Kim, Youngsik Yun, Hahyun Lee, Gun Bang, and Youngjung Uh. Per-
gaussian embedding-based deformation for deformable 3d gaussian splatting, 2024.

[2] Minh-Quan Viet Bui, Jongmin Park, Jihyong Oh, and Munchurl Kim. Dyblurf: Dynamic
deblurring neural radiance fields for blurry monocular video. arXiv preprint arXiv:2312.13528,
2023.

[3] Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. CVPR, 2023.
[4] Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting, 2024.
[5] Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi

Yang. Segment and track anything. arXiv preprint arXiv:2305.06558, 2023.
[6] Devikalyan Das, Christopher Wewer, Raza Yunus, Eddy Ilg, and Jan Eric Lenssen. Neu-

ral parametric gaussians for monocular non-rigid object reconstruction. arXiv preprint
arXiv:2312.01196, 2023.

[7] Gang Zeng Diwen Wan, Ruijie Lu. Superpoint gaussian splatting for real-time high-fidelity
monocular dynamic scene reconstruction. In Forty-first International Conference on Machine
Learning, 2024.

[8] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4d
gaussian splatting: Towards efficient novel view synthesis for dynamic scenes, 2024.

[9] Bardienus Pieter Duisterhof, Zhao Mandi, Yunchao Yao, Jia-Wei Liu, Mike Zheng Shou, Shuran
Song, and Jeffrey Ichnowski. Md-splatting: Learning metric deformation from 4d gaussians in
highly deformable scenes. ArXiv, abs/2312.00583, 2023.

[10] Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias
Nießner, and Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIG-
GRAPH Asia 2022 Conference Papers, pages 1–9, 2022.

[11] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and Angjoo
Kanazawa. K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

[12] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from
dynamic monocular video. In Proceedings of the IEEE International Conference on Computer
Vision, 2021.

[13] Hang Gao, Ruilong Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Dynamic
novel-view synthesis: A reality check. In NeurIPS, 2022.

[14] Zhiyang Guo, Wengang Zhou, Li Li, Min Wang, and Houqiang Li. Motion-aware 3d gaussian
splatting for efficient dynamic scene reconstruction, 2024.

[15] Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi.
Sc-gs: Sparse-controlled gaussian splatting for editable dynamic scenes. arXiv preprint
arXiv:2312.14937, 2023.

[16] Hankyu Jang and Daeyoung Kim. D-tensorf: Tensorial radiance fields for dynamic scenes.
ArXiv, abs/2212.02375, 2022.

[17] Erik C.M. Johnson, Marc Habermann, Soshi Shimada, Vladislav Golyanik, and Christian
Theobalt. Unbiased 4d: Monocular 4d reconstruction with a neural deformation model. CVPR
Workshop, 2023.

[18] Hanbyul Joo, Hyun Soo Park, and Yaser Sheikh. Map visibility estimation for large-scale
dynamic 3d reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition,
2014.

[19] Kai Katsumata, Duc Minh Vo, and Hideki Nakayama. An efficient 3d gaussian representation
for monocular/multi-view dynamic scenes, 2023.

[20] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian
splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July
2023.

[21] Leonid Keselman and Martial Hebert. Approximate differentiable rendering with algebraic
surfaces. In European Conference on Computer Vision (ECCV), 2022.

[22] Tobias Kirschstein, Shenhan Qian, Simon Giebenhain, Tim Walter, and Matthias Nießner.
Nersemble: Multi-view radiance field reconstruction of human heads. ACM Trans. Graph.,
42(4), jul 2023.

[23] Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis. Dynmf: Neural motion factorization for
real-time dynamic view synthesis with 3d gaussian splatting. arXiV, 2023.

[24] Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas, and Kostas Daniilidis. Mosca: Dynamic
gaussian fusion from casual videos via 4d motion scaffolds. arXiv preprint arXiv:2405.17421,
2024.

[25] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil
Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural
3d video synthesis from multi-view video. In Proceedings of the IEEE/CVF Conference on

26



Computer Vision and Pattern Recognition, pages 5521–5531, 2022.
[26] Zhan Li, Zhang Chen, Zhong Li, and Yi Xu. Spacetime gaussian feature splatting for real-time

dynamic view synthesis. arXiv preprint arXiv:2312.16812, 2023.
[27] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for

space-time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

[28] Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar:
Neural dynamic image-based rendering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023.

[29] Yiqing Liang, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James
Tompkin, and Lei Xiao. Gaufre: Gaussian deformation fields for real-time dynamic novel view
synthesis, 2023.

[30] Youtian Lin, Zuozhuo Dai, Siyu Zhu, and Yao Yao. Gaussian-flow: 4d reconstruction with
dynamic 3d gaussian particle. arXiv:2312.03431, 2023.

[31] Qingming Liu, Yuan Liu, Jiepeng Wang, Xianqiang Lv, Peng Wang, Wenping Wang, and Junhui
Hou. Modgs: Dynamic gaussian splatting from causually-captured monocular videos, 2024.

[32] Yu-Lun Liu, Chen Gao, Andreas Meuleman, Hung-Yu Tseng, Ayush Saraf, Changil Kim,
Yung-Yu Chuang, Johannes Kopf, and Jia-Bin Huang. Robust dynamic radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[33] Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Ming Yang, Xiao Tang, Feng Zhu, and
Yuchao Dai. 3d geometry-aware deformable gaussian splatting for dynamic view synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

[34] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3d gaussians:
Tracking by persistent dynamic view synthesis, 2023.

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

[36] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. Dynamicfusion: Reconstruction and
tracking of non-rigid scenes in real-time. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 343–352, 2015.

[37] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M.
Seitz, and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. ICCV, 2021.

[38] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B
Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional
representation for topologically varying neural radiance fields. ACM Trans. Graph., 40(6), dec
2021.

[39] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf:
Neural radiance fields for dynamic scenes. arXiv preprint arXiv:2011.13961, 2020.

[40] Sameera Ramasinghe, Violetta Shevchenko, Gil Avraham, and Anton van den Hengel. Blirf:
Band limited radiance fields for dynamic scene modeling. In AAAI 2024, 2024.

[41] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[42] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic. Killingfusion:
Non-rigid 3d reconstruction without correspondences. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5474–5483, 2017.

[43] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and
Andreas Geiger. Nerfplayer: A streamable dynamic scene representation with decomposed
neural radiance fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732–
2742, 2023.

[44] Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3dgstream:
On-the-fly training of 3d gaussians for efficient streaming of photo-realistic free-viewpoint
videos. 2024.

[45] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lassner, and
Christian Theobalt. Non-rigid neural radiance fields: Reconstruction and novel view synthesis
of a dynamic scene from monocular video, 2020.

[46] Chaoyang Wang, Ben Eckart, Simon Lucey, and Orazio Gallo. Neural trajectory fields for
dynamic novel view synthesis. March 2021.

[47] Chaoyang Wang, Lachlan Ewen MacDonald, László A. Jeni, and Simon Lucey. Flow supervision
for deformable nerf. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 21128–21137, June 2023.

[48] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

27



[49] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for im-
age quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems &
Computers, 2003, volume 2, pages 1398–1402. Ieee, 2003.

[50] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi
Tian, and Wang Xinggang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv
preprint arXiv:2310.08528, 2023.

[51] Yuting Xiao, Xuan Wang, Jiafei Li, Hongrui Cai, Yanbo Fan, Nan Xue, Minghui Yang, Yujun
Shen, and Shenghua Gao. Bridging 3d gaussian and mesh for freeview video rendering, 2024.

[52] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. Computer Graphics Forum, 2022.

[53] Zhiwen Yan, Chen Li, and Gim Hee Lee. Nerf-ds: Neural radiance fields for dynamic spec-
ular objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8285–8295, 2023.

[54] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing Zhang, and Xiaogang Jin. De-
formable 3d gaussians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101, 2023.

[55] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. In International Conference on
Learning Representations (ICLR), 2024.

[56] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis
of dynamic scenes with globally coherent depths from a monocular camera. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5335–5344, 2020.

[57] Heng Yu, Joel Julin, Zoltan A Milacski, Koichiro Niinuma, and Laszlo A Jeni. Cogs: Control-
lable gaussian splatting. arXiv, 2023.

[58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[59] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Surface splatting. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
pages 371–378, 2001.

28


	Introduction
	Background
	3D Gaussian Splatting (3DGS)
	Gaussian Splatting for Dynamic View Synthesis

	Evaluation Setup
	Datasets
	Metrics
	Methods

	Results
	Finding 1: Gaussian Methods Struggle In Comparison to a Hybrid Neural Field
	Finding 2: Low-dimensional motion representations help
	Finding 3: Dataset Variations Overwhelm Gaussian Method Variations
	Finding 4: Adaptive Density Control Causes Headaches
	Finding 5: Lack of Multi-View Cues Hurts Dynamic Gaussians More
	Finding 6: Narrow Baselines and Fast Objects Cause Error
	Finding 7: Specular Objects are a Challenge for All Methods
	Finding 8: Foreground/Background Separation Clarifies Static/Dynamic Results

	Conclusion
	Additional Results
	Quantitative Results Per Dataset
	Quantitative Result Plots Per Metric
	PSNR
	SSIM
	MS-SSIM
	Train Time and FPS

	Convergence-Frequency Relationships Per Method
	Ablations for Instructive Dataset

	Additional Data-related Details
	Dataset Descriptions
	Erroneous Camera Pose

	Experimental Implementation
	Shared Hyperparameters
	Extra Hyperparameters: Deformation
	Extra Hyperparameters: Curve
	Details of Dynamic 3D Gaussian Implementation

	Related Work
	Mathematical Motion Model Definitions
	Polynomial
	Fourier
	RBF
	RTGS's 3D Rendering


